首页> 外文学位 >Nanoparticle engineering and control of microhotplate gas sensor performance.
【24h】

Nanoparticle engineering and control of microhotplate gas sensor performance.

机译:纳米工程和微孔板气体传感器性能的控制。

获取原文
获取原文并翻译 | 示例

摘要

Tin Oxide (SnO2) based microhotplate gas sensors developed at the National Institute of Standards and Technology (NIST) are considered as potential candidates for “electronic nose” applications. Three performance parameters that govern their use in electronic noses are sensitivity, selectivity and long term stability in different analytes. This dissertation reports on experimental work using MEMS-based microhotplate arrays as material development platforms to explore techniques for enhancing and controlling these three performance parameters. Metallic nanoparticles are explored as ultra thin seed layers to control SnO2 growth, microstructure, and improve sensitivity, stability, and selectivity.; The experimental work consists of (1) evaporative deposition of nanoparticles seed layers (Fe, Ni, Co, Ag, & Cu) onto the microhotplates, (2) self-aligned SnO2 deposition in a cold wall CVD reactor, (3) microstructure characterization using SEM, and (4) testing in different hydrocarbon gases to monitor sensitivity, selectivity an stability.; In general, nanoparticle seeding with high temperature metals (Fe, Co, & Ni) resulted in faster SnO2 growth, smaller SnO2 grain size and higher sensitivity for different analytes. The rapid thermal capability of microhotplates was used to facilitate monitor temperature programmed selectivity (TPS) characterization for the different analytes. Large-scale arrays of microhotplates were employed to monitor materials programmed selectivity (MPS). Limited TPS and enhanced MPS were observed for the nanoparticle seeded microhotplate gas sensors. The merits and de-merits; of MPS and TPS for effective gas identification are discussed.; The stability of the nanoparticle seeded SnO2 sensors was monitored continuously for more than 70 hours. The enhanced sensitivity found for the nickel seeded SnO2 sensors together with very good stability for over 70 hours makes it a good choice for hydrocarbon sensing applications. Recommendations are placed for sensors developed in this thesis and future work that can improve the current status of microhotplate technology are discussed.
机译:美国国家标准技术研究院(NIST)开发的基于氧化锡(SnO 2 )的微孔板气体传感器被认为是“电子鼻”应用的潜在候选者。决定其在电子鼻中使用的三个性能参数是灵敏度,选择性和在不同分析物中的长期稳定性。本文报道了基于MEMS的微孔板阵列作为材料开发平台的实验工作,以探索增强和控制这三个性能参数的技术。以金属纳米颗粒为超薄种子层,以控制SnO 2 的生长,微观结构并提高灵敏度,稳定性和选择性。实验工作包括(1)将纳米颗粒种子层(Fe,Ni,Co,Ag和Cu)蒸发沉积到微热板上,(2)在冷壁中自对准SnO 2 沉积CVD反应器,(3)使用SEM进行微观结构表征,以及(4)在不同的烃类气体中进行测试以监测灵敏度,选择性和稳定性。通常,用高温金属(Fe,Co和Ni)进行纳米粒子接种可提高SnO 2 的生长速度,减小SnO 2 的晶粒尺寸,并提高对不同分析物的灵敏度。微孔板的快速热功能被用于监测不同分析物的程序升温选择性(TPS)表征。微孔板的大规模阵列被用来监测材料的程序选择性(MPS)。对于纳米粒子接种的微热板气体传感器,观察到有限的TPS和增强的MPS。优缺点;讨论了MPS和TPS的有效气体识别方法。连续监测了超过70小时的纳米粒子种子SnO 2 传感器的稳定性。镍种子SnO 2 传感器具有更高的灵敏度,并且在70多个小时内具有非常好的稳定性,使其成为烃类传感应用的理想选择。针对本文开发的传感器提出了建议,并讨论了可以改善微热板技术现状的未来工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号