首页> 外文学位 >Magnetohydrodynamic transport and confinement of molecules at microelectrodes.
【24h】

Magnetohydrodynamic transport and confinement of molecules at microelectrodes.

机译:在微电极上的磁流体动力学传输和限制分子。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes magnetic field phenomena associated with electrochemical reactions at microelectrodes. Chapter 1 provides an overview of magnetic field effects on electrochemical reactions. Two magnetic forces are operative whenever an electrochemical reaction is carried out in an external magnetic field. The first force is the Lorentz force (F = q( v × B)) acting on the charge-carrying ions. This force will accelerate the electrogenerated ions, giving rise to magnetohydrodynamic (MHD) flow. The second force, the magnetic gradient force (F ∇B = 2CNA(m*2/3kT) (B•∇) B), arises when an electrochemical reaction occurs in the presence of a nonuniform field.; Chapter 2 describes the magnetic field driven convective transport at inlaid-disk Pt microelectrodes as a function of the electrode radius. Large enhancements (∼125%) in the voltammetric current for the 1-e reduction of nitrobenzene (NB) are reported for electrodes with radii >100 μm. Chapter 3 presents a new microfluidic system based on MHD vortex flow between two Pt microelectrodes in an external magnetic field of 1 Tesla. Focused transport of molecules in flow tubes, pulses, and circular-sheets is demonstrated by video-enhanced microscopy.; Chapter 4 describes the focusing of paramagnetic molecules near the electrode surface of magnetized ferromagnetic Fe and Ni microelectrodes. Results show that diminishments in the electrochemical reaction rates as large as 40% are observed for Fe and Ni microelectrodes compared to Pt when immersed in a uniform magnetic field. Chapter 5 demonstrates further how the gradient force can be used to focus and confine paramagnetic molecules into spatial regions surrounding ferromagnetic microelectrodes. The confinement of paramagnetic NB anions in field gradients generated at magnetized cylinder-shaped Fe for tens of seconds is also reported in Chapter 5.; Chapter 6 compares the influence of the magnetic gradient force for paramagnetic 2,26,6-tetramethyl-1-piperidinyloxyl (TEMPO) vs. diamagnetic N,N,N,N,-tetramethyl-p-phenylenediamine (TMPD) solutions. The electrochemical behavior of Fe, Ni, and Pt microelectrodes for the 1-e oxidation of TEMPO and TMPD is reported. Results indicate that current enhancements as large as 250% can be achieved as a result of magnetophoretic transport of paramagnetic species facilitated by the magnetic gradient force.
机译:本文描述了与微电极上电化学反应有关的磁场现象。第1章概述了磁场对电化学反应的影响。每当在外部磁场中进行电化学反应时,就有两个磁力起作用。第一个力是作用在带电荷离子上的洛伦兹力( F = q( v × B ))。该力将加速电产生的离子,从而产生磁流体动力学(MHD)流动。第二个力是磁梯度力( F ∇B = 2CN A (m * 2 / 3kT) ( B •∇) B ),是在不均匀电场存在下发生电化学反应时产生的。第2章介绍了镶嵌圆盘Pt微电极上的磁场驱动的对流传输,它是电极半径的函数。据报道,对于半径> 100μm的电极,硝基苯的1-e -还原伏安电流大幅度提高(〜125%)。第3章介绍了一种新的微流体系统,该系统基于在1特斯拉的外部磁场中两个Pt微电极之间的MHD涡流。通过视频增强显微镜证实了分子在流管,脉冲和圆片中的集中运输。第4章介绍了顺磁性分子在磁化铁磁性Fe和Ni微电极的电极表面附近的聚焦。结果表明,与浸入均匀磁场中的Pt相比,Fe和Ni微电极的电化学反应速率降低了40%。第5章进一步说明了如何使用梯度力将顺磁性分子聚焦并限制在铁磁微电极周围的空间区域中。在第五章中还报告了顺磁性NB阴离子在磁化圆柱状Fe产生的电场梯度中的约束时间为数十秒。第6章比较了顺磁2,26,6-四甲基-1-哌啶基氧基(TEMPO)与反磁N,N,N ',N '-氧化的电化学行为。结果表明,由于磁梯度力的促进,顺磁性物质的磁热传输可以实现高达250%的电流增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号