首页> 外文期刊>International Journal of Heat and Mass Transfer >Thermally developing combined magnetohydrodynamic and electrokinetic transport in narrow confinements with interfacial slip
【24h】

Thermally developing combined magnetohydrodynamic and electrokinetic transport in narrow confinements with interfacial slip

机译:在带有界面滑移的狭窄区域内热发展磁流体动力和电动输运

获取原文
获取原文并翻译 | 示例
       

摘要

In this article, we investigate the combined consequences of magnetohydrodynamic forces and interfacial slip on the heat transfer characteristics of streaming potential mediated flow in narrow fluidic confinements by following a semianalytical formalism. Going beyond the celebrated Debye-Hueckel linearization, we obtain a closed form analytical expression for velocity and induced streaming potential through the consistent description of finite conductance of the immobilized Stem layer. We report an augmentation in the streaming potential field as attributable to the wall slip activated enhanced electro-magnetohydrodynamic transport of the ionic species within the EDL. In particular, we demonstrate the key role of induced streaming potential in altering thermal transport and Nusselt number variation considering the concurrent interplay of hydrodynamic slip lengths, magnetic effects, viscous dissipation, and Joule heating. We also show the implications of Stern layer conductivity and magnetohydrodynamic influence on system irreversibility through entropy generation analysis due to fluid friction and heat transfer. Finally, our results have significant scientific and technological consequences in the novel design of future generation energy efficient devices and could be useful in further advancement of theory, simulation, and experimental work.
机译:在本文中,我们通过半解析形式论研究了磁流体动力和界面滑移对窄流体受限中流势介导流的传热特性的综合影响。超越著名的Debye-Hueckel线性化,我们通过固定化茎干有限电导的一致描述,获得了速度和感应流势的闭式分析表达式。我们报告在流电势领域的增加归因于EDL内的离子物质的壁滑激活增强的电磁流体动力学传输。特别是,考虑到流体动力学滑移长度,磁效应,粘性耗散和焦耳热的相互作用,我们证明了诱导流势在改变热传输和努塞尔数变化中的关键作用。我们还通过熵产生分析(由于流体摩擦和热传递),显示了斯特恩层电导率和磁流体动力学对系统不可逆性的影响。最后,我们的结果在下一代节能设备的新颖设计中具有重大的科学技术意义,并且可能对理论,仿真和实验工作的进一步发展很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号