首页> 外文学位 >Low pressure chemical vapor deposited borosilicate glasses for materials integration applications.
【24h】

Low pressure chemical vapor deposited borosilicate glasses for materials integration applications.

机译:用于材料集成应用的低压化学气相沉积硼硅酸盐玻璃。

获取原文
获取原文并翻译 | 示例

摘要

This thesis work investigated the growth and characterization of borosilicate glasses (BSGs), (SiO2)1−x(B2O 3)x, for materials integration applications. In particular, BSG layers deposited by low-pressure chemical vapor deposition (LPCVD) were used in wafer bonding and compliant substrate applications.; A reaction model for BSG film growth from tetraethylorthosilicate (TEOS) and trimethylborate (TMB) was developed that predicts the growth rate and composition of BSG films up to x = 0.70. The BSG reaction model includes a strongly adsorbed TEOS-derived intermediate that forms SiO2 and a direct surface reaction of TMB, in O2, to form B2O 3. The BSG film morphology, critical to wafer bonding, was found to have a root-mean-square roughness of ∼0.5 nm, however, the specific morphology depended on reactor conditions. The BSG film can be planarized by thermal annealing between 550–725°C in a waterfree environment.; Room temperature wafer bonding of GaAs to BSG/GaAs followed by thermal annealing and thermocompression bonding were investigated. For room temperature bonding, the surfaces were treated with a pre-bonding treatment of O 2 plasma exposure and H2O rinsing to make the surfaces hydrophilic. The chemical role of this pre-bonding treatment was investigated by Fourier transform infrared (FTIR) spectroscopy. The O2 plasma sputter etched the BSG surface, resulting in the presentation of a fresh surface for bonding. The H2O rinse added H2O/OH groups, however, the selective removal of B2O3 was measured. The bonding chemistry of various GaAs-to-oxide/GaAs bonded samples was investigated using multiple internal transmission (MIT) FTIR, providing a detailed bond-chemistry model. The initial bond is formed from surface absorbed H2O/OH species. After annealing at temperatures up to 600°C, a covalent bond between BSG and As(V)-O-related and Ga-O-related oxides is formed.; BSG layers were used to develop a compliant substrate, consisting of 10 nm of GaAs on a BSG layer, for lattice-mismatched epitaxial growth. A process of wafer bonding and aqueous-based etching was used to fabricate the compliant substrate. Lattice-mismatched InxGa1−xAs films grown on compliant substrates exhibit smoother surfaces and narrower strain distributions in the X-ray diffraction spectra than films grown on conventional substrates. The mechanism for compliant behavior is demonstrated to be a result of modified dislocation introduction compared to conventional substrates.
机译:本文研究了硼硅玻璃(BSGs),(SiO 2 1-x (B 2 O 3 x ,用于材料集成应用。特别地,通过低压化学气相沉积(LPCVD)沉积的BSG层被用于晶片键合和顺应性基板应用中。建立了由原硅酸四乙酯(TEOS)和硼酸三甲酯(TMB)制成的BSG膜的反应模型,该模型预测了x = 0.70的BSG膜的生长速率和组成。 BSG反应模型包括形成SiO 2 的强烈吸附的TEOS衍生中间体和O 2 中TMB的直接表面反应以形成B 2 < / sub> O 3 。发现对晶片键合至关重要的BSG膜形态具有约0.5 nm的均方根粗糙度,但是具体的形态取决于反应器条件。在无水环境中,可以通过在550–725°C之间进行热退火来平坦化BSG膜。研究了室温下GaAs与BSG / GaAs的晶圆键合,然后进行热退火和热压键合。对于室温粘合,用O 2 等离子体暴露和H 2 O漂洗的预粘合处理对表面进行处理,以使表面亲水。通过傅里叶变换红外(FTIR)光谱研究了这种预键合处理的化学作用。 O 2 等离子溅射蚀刻了BSG表面,从而产生了用于粘合的新表面。 H 2 O漂洗添加了H 2 O / OH基团,但是选择性去除了B 2 O 3 被测量。使用多重内部传输(MIT)FTIR研究了各种GaAs-to-氧化物/ GaAs结合样品的结合化学,提供了详细的结合化学模型。初始键由表面吸收的H 2 O / OH物种形成。在最高600°C的温度下退火后,在BSG与As(V)-O-相关和Ga-O-相关的氧化物之间形成共价键。 BSG层用于开发顺应性基板,该基板由BSG层上的10 nm GaAs组成,用于晶格不匹配的外延生长。晶片键合和水基蚀刻的过程用于制造柔顺基板。在顺应性基板上生长的晶格不匹配的In x Ga 1-x As薄膜在X射线衍射光谱中比在常规基板上生长的薄膜具有更光滑的表面和更窄的应变分布。与常规基板相比,顺应性行为的机制被证明是改良的位错引入的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号