首页> 外文学位 >Modeling and characterization of piezoelectric energy harvesting systems with the pulsed resonant converter.
【24h】

Modeling and characterization of piezoelectric energy harvesting systems with the pulsed resonant converter.

机译:用脉冲谐振转换器对压电能量收集系统进行建模和表征。

获取原文
获取原文并翻译 | 示例

摘要

For many low-powered portable and wireless electronic applications the finite energy density of chemical batteries places limits on their functional lifetime. Through the use of energy harvesting techniques, ambient vibration energy can be captured and converted into usable electricity in order to create self-powering systems which are not limited by finite battery energy. Typical energy harvesting systems are composed of two components, a transducer that converts the mechanical vibrations into electrical energy and a power converter that efficiently delivers the harvested energy to the electronic load. The practical design of energy harvesting systems must include both components and consider how coupling between the two affects overall system performance. In order to effectively design an energy harvesting system for a specific application, a model is needed that accurately characterizes the energy harvesting process.;This work focuses on the development and experimental characterization of a system-level model for a vibration energy harvesting system. The system considered in this work is comprised of a piezoelectric composite beam transducer and a pulsed resonant converter (PRC). In addition to capturing the general electromechanical behavior, the system modeling developed in this work also considers the effects of non-ideal operation of the transducer and power converter. Specifically, this work examines the effects of non-resonant frequency operation, conduction losses in the PRC, and non-ideal switch timing. Unlike previous research, which typically focuses on only the electrical domain behavior, the effects of harvesting energy on the mechanics of the transducer are also considered.;In this work, lumped element modeling techniques are used to model the behavior of the piezoelectric transducer. Two system-level models are presented, one using a full lumped element model (LEM) of the transducer and the other using a simplified resonant transducer model. The finite losses in the PRC are included in both models. An experimental test bed is developed, which includes several piezoelectric transducers and a discrete PRC implementation. Through experimental characterization of the energy harvesting system, it is shown that the full LEM accurately captures the behavior of the system over a range of vibration frequencies, while the simplified resonant model is only valid at a single operating frequency. The effects of modeling losses in the power converter are also demonstrated. For the specific systems implemented in this work, is it shown that an ideal model with zero losses overpredicts the power delivered to the load by 30--50%.
机译:对于许多低功率便携式和无线电子应用,化学电池的有限能量密度对其功能寿命造成了限制。通过使用能量收集技术,可以捕获周围的振动能量并将其转换为可用的电,以创建不受有限电池能量限制的自供电系统。典型的能量收集系统由两个组件组成,一个将机械振动转换为电能的换能器,以及一个将收集的能量有效地传递到电子负载的功率转换器。能量收集系统的实际设计必须包括这两个组件,并考虑两者之间的耦合如何影响整体系统性能。为了针对特定应用有效地设计能量收集系统,需要一个模型来准确表征能量收集过程。这项工作着重于振动能量收集系统的系统级模型的开发和实验表征。在这项工作中考虑的系统由压电复合束换能器和脉冲谐振转换器(PRC)组成。除了捕获一般的机电行为外,在这项工作中开发的系统建模还考虑了换能器和功率转换器的非理想操作的影响。具体而言,这项工作研究了非谐振频率操作,PRC中的传导损耗以及非理想开关时序的影响。与以前的研究通常只关注电域行为不同,之前的研究也考虑了能量收集对换能器力学的影响。在这项工作中,集总元素建模技术用于对压电换能器的行为进行建模。提出了两种系统级模型,一种使用换能器的全集总元件模型(LEM),另一种使用简化的谐振换能器模型。两种模型都包括了中国的有限损失。开发了一个实验测试台,其中包括多个压电换能器和分立的PRC实施方案。通过能量收集系统的实验表征,表明完整的LEM可以准确捕获系统在一定振动频率范围内的行为,而简化的谐振模型仅在单个工作频率下有效。还演示了功率转换器中建模损耗的影响。对于这项工作中实现的特定系统,表明具有零损耗的理想模型高估了传递给负载的功率30--50%。

著录项

  • 作者

    Phipps, Alex Geoffrey.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 298 p.
  • 总页数 298
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号