首页> 外文学位 >Experimental quantum computation with nuclear spins in liquid solution.
【24h】

Experimental quantum computation with nuclear spins in liquid solution.

机译:液体溶液中核自旋的实验量子计算。

获取原文
获取原文并翻译 | 示例

摘要

Quantum computation offers the extraordinary promise of solving mathematical and physical problems which are simply beyond the reach of classical computers. However, the experimental realization of quantum computers is extremely challenging, because of the need to initialize, control and read out the state of a set of coupled quantum systems while maintaining fragile quantum coherence.; In this thesis work, we have taken significant steps towards the realization of a practical quantum computer: using nuclear spins and magnetic resonance techniques at room temperature, we provided proof of principle of quantum computing in a series of experiments which culminated in the implementation of the simplest instance of Shor's quantum algorithm for prime factorization (15 = 3 × 5), using a seven-spin molecule. This algorithm achieves an exponential advantage over the best known classical factoring algorithms and its implementation represents a milestone in the experimental exploration of quantum computation.; These remarkable successes have been made possible by the synthesis of suitable molecules and the development of many novel techniques for initialization, coherent control and readout of the state of multiple coupled nuclear spins. Furthermore, we devised and implemented a model to simulate both unitary and decoherence processes in these systems, in order to study and quantify the impact of various technological as well as fundamental sources of errors.; In summary, this work has given us a much needed practical appreciation of what it takes to build a quantum computer. While liquid NMR quantum computing has well-understood scaling limitations, many of the techniques that originated from this research may find use in other, perhaps more scalable quantum computer implementations.
机译:量子计算为解决数学和物理问题提供了极大的希望,而这是经典计算机无法企及的。然而,由于需要初始化,控制和读出一组耦合的量子系统的状态,同时保持脆弱的量子相干性,因此量子计算机的实验实现具有极大的挑战性。在本论文工作中,我们朝着实现实用的量子计算机迈出了重要一步:利用室温下的核自旋和磁共振技术,我们通过一系列实验最终证明了量子计算的原理,这些实验最终实现了量子计算。使用七自旋分子,最简单的Shor量子算法进行素因数分解的实例(15 = 3×5)。与最著名的经典因式分解算法相比,该算法具有指数优势,其实现代表了量子计算实验探索中的一个里程碑。通过合成合适的分子并开发出许多用于初始化,相干控制和读出多个偶联核自旋状态的新颖技术,这些惊人的成功成为可能。此外,我们设计并实现了一个模型,以模拟这些系统中的统一和去相干过程,以便研究和量化各种技术错误以及基本错误源的影响。总而言之,这项工作使我们对构建量子计算机所需的知识有了非常实际的了解。尽管液态NMR量子计算具有易于理解的缩放限制,但源自这项研究的许多技术可能会在其他可能更具伸缩性的量子计算机实现中找到用处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号