首页> 外文学位 >Experimental demonstrations of optical techniques to implement networking functions in dynamically reconfigurable wavelength-division-multiplexed fiber-optic communication networks.
【24h】

Experimental demonstrations of optical techniques to implement networking functions in dynamically reconfigurable wavelength-division-multiplexed fiber-optic communication networks.

机译:在动态可重新配置的波分复用光纤通信网络中实现联网功能的光学技术的实验演示。

获取原文
获取原文并翻译 | 示例

摘要

The deployment of optical networks will enable high capacity links between users but will accentuate the problems associated with transporting and managing even more numerous and inassimilable signals. Advances in photonic techniques suggest interesting solutions for expanding network transport capacity and for increasing transparency and flexibility by adding to node capabilities. There are many reasons to implement network functions in the optical domain: (i) to avoid electronic processing bottlenecks, (ii) to achieve data-format and data-rate independence, (iii) to provide reliable and cost efficient control and management, and (iv) to compensate the degradation effects.; It is critical for future networks to provide additional functionality in the optical physical layer to ensure high-speed and high throughput performance. In this thesis, the following novel implementations of network functions in the optical domain are presented: (i) Reconfigurable optical header recognition and penalty-free routing of a 2.5-Gb/s packet stream with a 1.6-ns guard time, using cross-gain compression in an SOA for time-to-wavelength mapping and two fiber Bragg grating arrays for tunable correlation decoding. (ii) Variable-bit-rate header recognition of incoming data packets at 155 Mb/s, 622 Mb/s and 2.5 Gb/s with fiber Bragg grating optical correlators, and switching. (iii) Optical time-slot-interchange and wavelength conversion of the bits in a 2.5-Gb/s bit stream to achieve a reconfigurable time/wavelength switch, using difference-frequency-generation (DFG) for wavelength conversion and fiber Bragg gratings (FBG) as wavelength-dependent optical time buffers. (iv) High precision packet and bit synchronization of an optical switching node to an incoming packet stream, employing only four preamble bits and FBG continuous optical correlators to determine the start of a packet with 1/8th of a bit time precision. (v) Penalty-free all-optical wavelength shifting of two subcarrier channels in a periodically poled lithium niobate (PPLN) structure, using a memoryless χ(2) (2) difference-frequency-generation process, which has a large linear dynamic range for crosstalk-free transparent operation. (vi) A wavelength-to-time mapping technique for control monitoring in a WDM network. (vii) RF power degradation compensation in SCM systems, using a nonlinearly-chirped fiber Bragg grating.
机译:光网络的部署将实现用户之间的高容量链接,但将加剧与传输和管理甚至更多且无法同化的信号有关的问题。光子技术的进步提出了一些有趣的解决方案,它们可以通过增加节点功能来扩展网络传输容量并提高透明度和灵活性。在光域中实现网络功能的原因很多:(i)避免电子处理瓶颈,(ii)实现数据格式和数据速率独立性,(iii)提供可靠且经济高效的控制和管理,以及(iv)补偿退化影响;对于未来的网络而言,在光学物理层中提供其他功能以确保高速和高吞吐量性能至关重要。在本论文中,提出了以下在光域中网络功能的新颖实现方式:(i)可重配置的光头识别和保护时间为1.6 ns的2.5 Gb / s数据包流的无损路由,使用交叉在SOA中进行增益压缩以进行时间到波长的映射,在两个光纤布拉格光栅阵列中进行可调的相关解码。 (ii)使用光纤布拉格光栅光学相关器以155 Mb / s,622 Mb / s和2.5 Gb / s的速率对传入数据包进行可变比特率标头识别,并进行切换。 (iii)对2.5 Gb / s比特流中的比特进行光学时隙交换和波长转换,以实现可重新配置的时间/波长切换,使用差分频率生成(DFG)进行波长转换和光纤布拉格光栅( FBG)作为依赖波长的光学时间缓冲器。 (iv)光交换节点与输入数据包流的高精度数据包和位同步,仅使用四个前导位和FBG连续光相关器来确定具有1/8 的数据包的开始时间精度。 (v)使用无记忆的χ(2):χ(2),在周期性极化的铌酸锂(PPLN)结构中的两个子载波通道实现无惩罚的全光学波长偏移。 super>差频生成过程,具有大的线性动态范围,可实现无串扰的透明操作。 (vi)WDM网络中用于控制监视的波长到时间映射技术。 (vii)使用非线性chi光纤布拉格光栅在SCM系统中进行RF功率衰减补偿。

著录项

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:47:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号