首页> 外文学位 >Development and control of an ultraprecision magnetic suspension stage.
【24h】

Development and control of an ultraprecision magnetic suspension stage.

机译:超精密磁悬浮平台的开发和控制。

获取原文
获取原文并翻译 | 示例

摘要

Advanced tool actuation technologies that deliver ultra precision positioning accuracy with high stiffness and high bandwidth are critically important to modern fabrication processes such as micro/nano fabrication. In this dissertation, the research on development and control of an ultra precision magnetic suspension stage (MSS) for precision engineering is presented. The research consists of development of the stage system, development of robust nonlinear control algorithms for ultra precision motion control, and development of robust disturbance rejection algorithms to improve dynamic stiffness. Preliminary characterization of micro grooving using the developed MSS is also performed in this research.; The current developed MSS utilizes an electromagnetic actuation scheme and a laser interferometric sensing system with nanometric resolutions. A general framework for ultra precision motion control of magnetic suspension actuation systems in multiple degrees of freedom is developed. It encompasses the development of nonlinear electromagnetic force model for six-degree-of-freedom actuation, and the design of the necessary control architecture. Feedback linearization is adopted in the nonlinear control architecture, while H robust control synthesis technique is adopted in the design of linear compensators upon the linearized system. Experiments results have illustrated the desired characteristics of the developed system in terms of stabilization, positioning, tracking, and contouring. Inter-axial coupling error reduction by MIMO design is also addressed.; Improved dynamic stiffness is critically important to ultra precision machining and micro/nano fabrication where ultra precision tracking at high bandwidths in face of significant external forces is required. For rejection of wide band disturbances, two approaches, namely, a disturbance compensation algorithm based on the inverse plant dynamics and a chattering free sliding mode (CFSM) disturbance rejection algorithm, are developed. The CFSM scheme utilizes a continuous approximation of the switching function to eliminate chattering and a novel derivative control term to elevate the bandwidth of disturbance rejection. Experimental results have shown that the dynamic stiffness is effectively increased with the developed scheme. To reject narrow band disturbances, a control structure that combines the internal model principle and frequency estimation algorithms based on the adaptive notch filtering theories is developed.
机译:具有超高定位精度,高刚度和高带宽的先进工具驱动技术对于诸如微/纳米制造等现代制造工艺至关重要。本文提出了一种用于精密工程的超精密磁悬浮平台(MSS)的开发与控制的研究。研究包括舞台系统的开发,用于超精密运动控制的鲁棒非线性控制算法的开发以及用于提高动态刚度的鲁棒干扰抑制算法的开发。在这项研究中,还对使用已开发的MSS进行微刻槽的初步表征进行了研究。当前开发的MSS利用电磁驱动方案和具有纳米分辨率的激光干涉传感系统。开发了用于多自由度的磁悬浮致动系统的超精密运动控制的通用框架。它包括用于六自由度致动的非线性电磁力模型的开发以及必要的控制架构的设计。非线性控制体系结构采用反馈线性化,线性化系统的线性补偿器设计采用 H 鲁棒控制综合技术。实验结果从稳定性,定位,跟踪和轮廓方面说明了开发系统的理想特性。还解决了通过MIMO设计减少轴间耦合误差的问题。动态刚度的提高对于超精密加工和微纳加工至关重要,在超精密加工和微纳加工中,需要在高带宽下面对大量外力进行超精密跟踪。为了抑制宽带干扰,开发了两种方法,即基于逆工厂动力学的干扰补偿算法和颤动自由滑模(CFSM)干扰抑制算法。 CFSM方案利用开关函数的连续逼近来消除抖动,并利用新颖的导数控制项来提高干扰抑制的带宽。实验结果表明,所开发的方案可以有效地提高动态刚度。为了抑制窄带干扰,基于自适应陷波滤波理论,开发了一种结合了内部模型原理和频率估计算法的控制结构。

著录项

  • 作者

    Shan, Ximin.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号