首页> 外文学位 >Regulation of feeding by the parabrachial nucleus: A model for studying the mu-opioid receptor system.
【24h】

Regulation of feeding by the parabrachial nucleus: A model for studying the mu-opioid receptor system.

机译:臂旁神经对进食的调节:用于研究μ阿片受体系统的模型。

获取原文
获取原文并翻译 | 示例

摘要

The parabrachial nucleus (PBN) of the brain---especially the lateral PBN (LPBN)---is densely innervated by neurons that synthesize opioid neuropeptides and which express mu opioid receptors (MOPRs). Additionally, the PBN receives afferent input from gustatory and visceral sensory processes (Norgren et al, 1971) and possesses bidirectional communication with other brain regions related to homeostatic and nonhomeostatic feeding. Previous studies from our laboratory showed that parabrachial MOPRs are implicated in diverse roles related to ingestion, making it a useful model system to investigate the function of these receptors (Wilson et al., 2003; Ward and Simansky, 2006).;This thesis defines more precisely the structure and function of MOPRs in the PBN in regulating food intake. The work extended this role by linking events at the receptor level with intracellular signal transduction pathways and associating this cellular physiology with feeding. Thus, these data demonstrated the value of this parabrachial circuit as a model for analyzing in great detail the pharmacological mechanisms and cellular responses associated with MOPR function. These studies revealed several novel findings of methodological and theoretical as well as fundamental significance. First, (+)-naloxone [(+)-NLX] was used both in vitro and in vivo as a pharmacological tool to characterize the stereospecificity of the parabrachial MOPRs. Specifically, we have demonstrated that only (-)-NLX, and not (+)-NLX, blocks parabrachial MOPR-stimulated G-protein coupling further indicating the stereospecificity of the MOPR ligand binding domain.;Furthermore, by using (+)-NLX, we also established a novel mechanism for enhancing G-protein coupling and feeding behavior elicited by the direct agonist DAMGO. In particular, we showed that an ultra-low dose of (-)-NLX (0.001nM) enhanced DAMGO-stimulated G-protein coupling at 15min. The enantiomer (+)-NLX also enhanced DAMGO-stimulated G-protein coupling, but in a wider concentration range (0.01-10 nM). What is more important, (+)-NLX potentiated DAMGO-stimulated feeding behavior using doses that are commonly used with the active (-)-enantiomer for an antagonistic action (1-10nmo1/0.5ul). Based on these results, we suggest that (+)-NLX is a novel pharmacological tool for the study of MOPR function. Moreover, these outcomes ---enhancing agonist action at MOPRs--- would appear to have therapeutic relevance. This thesis further analyzed the MOPR subtype expressed in the PBN. Using the irreversible, RI-antagonist naloxonazine (Nlxz), we revealed that the functional MOPRs located in the parabrachial nucleus are of the micro 1 subtype and that these receptors mediate processes that modulate food intake in rats. Finally, we extended our studies intracellularly and showed that infusion of Nlxz into the LPBN increased the phosphorylation of the transcription factor CREB. With these data, we provided the first evidence implying that the phosphorylation of the cAMP response element binding protein (CREB) can be used as a biological marker that links the downstream cellular cascade of MOPR-associated G-protein coupling to feeding behavior.
机译:大脑的臂旁核(PBN)-特别是外侧PBN(LPBN)-被合成阿片类神经肽并表达μ阿片受体(MOPR)的神经元密集支配。另外,PBN接收来自味觉和内脏感觉过程的传入输入(Norgren等,1971),并与其他与稳态和非稳态喂养有关的大脑区域进行双向通信。我们实验室的先前研究表明,臂旁MOPRs参与了与摄入有关的多种作用,使其成为研究这些受体功能的有用模型系统(Wilson等,2003; Ward和Simansky,2006)。更准确地说,PBN中MOPR的结构和功能可以调节食物摄入量。这项工作通过将受体水平的事件与细胞内信号转导途径联系起来并将这种细胞生理学与进食联系起来,从而扩展了这一作用。因此,这些数据证明了肱臂旁回路作为模型的价值,该模型可用于详细分析与MOPR功能相关的药理机制和细胞应答。这些研究揭示了方法学和理论上以及基础上的一些新发现。首先,(+)-纳洛酮[(+)-NLX]在体外和体内都被用作药理学工具来表征臂旁MOPR的立体特异性。具体而言,我们已经证明只有(-)-NLX而非(+)-NLX阻断了臂旁经MOPR刺激的G蛋白偶联,进一步表明了MOPR配体结合域的立体特异性。此外,通过使用(+)- NLX,我们还建立了一种新的机制来增强直接激动剂DAMGO引起的G蛋白偶联和进食行为。特别地,我们显示了超低剂量的(-)-NLX(0.001nM)在15分钟时增强了DAMGO刺激的G蛋白偶联。对映体(+)-NLX也增强了DAMGO刺激的G蛋白偶联,但浓度范围更广(0.01-10 nM)。更重要的是,使用(+)-NLX增强DAMGO刺激的进食行为,使用的剂量通常与活性(-)-对映异构体一起用于拮抗作用(1-10nmo1 / 0.5ul)。根据这些结果,我们建议(+)-NLX是用于MOPR功能研究的新型药理学工具。此外,这些结果-在MOPR上增强激动剂作用-似乎具有治疗意义。本文进一步分析了PBN中表达的MOPR亚型。使用不可逆的RI拮抗剂纳洛酮嗪(Nlxz),我们发现位于臂旁核中的功能性MOPR属于micro 1亚型,并且这些受体介导调节大鼠食物摄取的过程。最后,我们在细胞内扩展了研究,并表明将Nlxz注入LPBN可增加转录因子CREB的磷酸化。有了这些数据,我们提供了第一个证据,暗示cAMP反应元件结合蛋白(CREB)的磷酸化可用作将MOPR相关G蛋白偶联下游细胞级联与进食行为联系起来的生物学标记。

著录项

  • 作者

    Chaijale, Nayla.;

  • 作者单位

    Drexel University College of Medicine.;

  • 授予单位 Drexel University College of Medicine.;
  • 学科 Biology Neuroscience.;Health Sciences Pharmacy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号