首页> 外文学位 >Symmetries and analytic structure of phase separation on curved manifolds.
【24h】

Symmetries and analytic structure of phase separation on curved manifolds.

机译:弯曲流形上相分离的对称性和解析结构。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, an extensive analytic study of the time-dependent Ginzburg-Landau (TDGL) or Model A equation in a variety of curved, two-dimensional surfaces is carried out, and comparisons are made to the well-known flat space case, using Lie group symmetry analysis and the calculation of the singularity structure of the generic solution to this equation. We show that while symmetry methods in general predict a non-trivial difference between flat and curved space dynamics, the singularity structure approach suggests the dynamics are largely identical, both methods however show little variation of their predictions with respect to parameter values, particularly for explicit curvature coupling. Specifically, the singularity structure is shown to be that of a movable logarithmic branch point for all of the curved manifolds examined, as well as flat space. Numerical simulations using a measure that focuses on phase separation were performed on the equation on flat space, a torus and an elliptic cylinder and they demonstrate that while the symmetry methods do capture significant local differences in the dynamics of phase separation, the singularity structure methodology better reflects the underlying similarity of both flat and curved space phase separation flowing from the deeper unity of all such variations on the TDGL equation, namely, the cubic nonlinearity and second-order parabolic structure. Numerical experiments are also performed on Model A in the case of a fully variable geometry whose dynamics are coupled to those of the order parameter, where the great complexity of the equations renders them largely intractable to analytic techniques. Lastly, the techniques of Painlevé analysis and Lie group theory are also applied to a family of financial models for options based around the Black-Scholes equation.
机译:在本文中,我们对各种弯曲的二维曲面中的时变Ginzburg-Landau(TDGL)或Model A方程进行了广泛的分析研究,并与著名的平面空间案例进行了比较,使用李群对称分析和该方程通用解的奇点结构计算。我们显示,虽然对称方法通常可以预测平面和弯曲空间动力学之间的非平凡差异,但是奇异结构方法表明动力学基本相同,但是两种方法在参数值方面都几乎没有变化,特别是对于显式曲率耦合。具体来说,奇异性结构显示为所有检查的弯曲歧管以及平坦空间的可移动对数分支点。在平面空间,圆环和椭圆圆柱上对方程进行了数值模拟,重点关注相分离,结果表明,尽管对称方法确实捕获了相分离动力学中的显着局部差异,但奇异结构方法更好反映了TDGL方程上所有此类变化的更深统一性产生的平坦空间和弯曲空间相分离的内在相似性,即立方非线性和二阶抛物线结构。在动力学完全与阶跃参数耦合的完全可变几何形状的情况下,还对模型A进行了数值实验,其中方程的巨大复杂性使其对于分析技术而言非常难处理。最后,基于Black-Scholes方程,Painlevé分析技术和李群理论也被应用于期权金融模型家族。

著录项

  • 作者

    Stubbs, Daniel William.;

  • 作者单位

    The University of Western Ontario (Canada).;

  • 授予单位 The University of Western Ontario (Canada).;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号