首页> 外文学位 >High-speed MMDS transceiver implementation with GPS clock synchronization.
【24h】

High-speed MMDS transceiver implementation with GPS clock synchronization.

机译:具有GPS时钟同步功能的高速MMDS收发器实现。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents the first phase in the hardware implementation of a high-speed transceiver to be used in a Multi-channel Multi-point Distribution Services (MMDS) system. Based on standard specifications, various building blocks were implemented using FPGA prototypes. Among the blocks, the forward error correction for data integrity protection is the most complicated and expensive to implement. This block includes the Reed-Solomon (RS) codec and byte interleaving to correct both random and burst errors caused by the channel. The high-speed RS decoder was designed using highly efficient algorithms and low latency VLSI circuits which are used to implement arithmetic in the Galois field GF(28). Results show a data rate of 80 Mbs was obtained using FPGA prototypes. A data rate of 200 Mbs should be achieved when ASICs are developed using the synthesizable Verilog code that was developed for this thesis.; In addition to a high bit rate, the MMDS system also requires robust synchronization in order to transmit a high-speed data stream and to ensure data integrity. Timing and synchronization are critical in system design. These include both clock and frame synchronization. In the absence of SONET and SDH, a precise frequency from the GPS is used for the system reference clock instead of crystal oscillators. This frequency and time have very high accuracy that is directly and continuously traceable to the Coordinates Universal Time. A reference 10 MHz clock with TTL output levels was generated from a GPS clock. This clock was used in the development of the high-speed MMDS system and the clock is proposed to be used for system clock synchronization. Precision timing combined with a word synchronization scheme makes the MMDS system simple, robust, low cost and reliable.
机译:本文介绍了在多通道多点分配服务(MMDS)系统中使用的高速收发器的硬件实现的第一阶段。基于标准规范,使用FPGA原型实现了各种构建块。在这些模块中,用于数据完整性保护的前向纠错是最复杂且实施最昂贵的。该模块包括里德-所罗门(RS)编解码器和字节交织,以校正由信道引起的随机和突发错误。使用高效算法和低延迟VLSI电路设计了高速RS解码器,这些电路用于在Galois场GF(2 8 )中实现算术。结果表明,使用FPGA原型获得了80 Mbs的数据速率。使用针对本论文开发的可综合Verilog代码开发ASIC时,应达到200 Mb的数据速率。除了高比特率之外,MMDS系统还需要强大的同步性,以便传输高速数据流并确保数据完整性。定时和同步在系统设计中至关重要。这些包括时钟和帧同步。在没有SONET和SDH的情况下,GPS的精确频率被用作系统参考时钟,而不是晶体振荡器。该频率和时间具有非常高的精度,可以直接连续地追溯到世界标准时间。从GPS时钟生成具有TTL输出电平的参考10 MHz时钟。该时钟用于高速MMDS系统的开发中,并且建议将该时钟用于系统时钟同步。精确定时与字同步方案相结合,使MMDS系统简单,可靠,成本低廉且可靠。

著录项

  • 作者

    van Dinh, Anh.;

  • 作者单位

    The University of Regina (Canada).;

  • 授予单位 The University of Regina (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号