首页> 外文学位 >Experimental studies of cyclic oxygenates on metal surfaces: Effects of ring structure on reactivity.
【24h】

Experimental studies of cyclic oxygenates on metal surfaces: Effects of ring structure on reactivity.

机译:金属表面环状含氧化合物的实验研究:环结构对反应性的影响。

获取原文
获取原文并翻译 | 示例

摘要

Surface science experiments have been performed to study a series of related cyclic oxygenate species on catalytic metal surfaces. Specifically, the thermal chemistry of 2(5H)-furanone (25HF), gamma-butyrolactone (GBL), 2,5-dihydrofuran (2,5-DHF) and 2,3-dihydrofuran (2,3-DHF) has been studied following adsorption on Pd(111) and Pt(111) single crystals. High resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD) were used as primary techniques to study each molecule on the catalytic metal surfaces.;The thermal surface chemistry of 25HF on palladium (111) and platinum (111) was studied first. After adsorbing 25HF on each surface at 140 K, increasing the temperature above 300 K resulted in opening and decomposition of the furanone ring. On both surfaces, 25HF undergoes decarbonylation and dehydrogenation to form CO and H2 as the principal desorption products. A key difference between Pd(111) and Pt(111) reactivity is the relatively high amount of CO2 produced from Pt(111), suggesting that 25HF decomposition proceeds in part through an additional surface intermediate on Pt(111). HREELS provides further indications that the reactions proceed through distinct pathways. On Pd(111), direct decarbonylation to surface CO and ethylidyne is observed. On Pt(111), two reaction pathways are proposed. One pathway is similar to the reaction pathway for Pd(111) and produces CO during TPD, and the other proceeds through an intermediate that retains the OCO functional group and results in CO2 as a desorption product.;The adsorption and thermal chemistry of GBL on the (111) surface of Pd and Pt was investigated next. GBL differs in its structure from 25HF in that there are no C=C double bonds, allowing for the determination of the role of saturated and unsaturated bonds in ring-opening chemistry. HREELS results indicate that GBL adsorbs at 160 K on both surfaces through its oxygenate functionality. On Pd(111), adsorbed GBL undergoes ring opening and decarbonylation by 273 K to produce adsorbed CO and surface hydrocarbon species. On Pt(111), little dissociation is observed using HREELS, with almost all of the GBL simply desorbing. TPD results are consistent with decarbonylation and subsequent dehydrogenation reactions on Pd(111), although small amounts of CO2 are also detected. TPD results from Pt(111) indicate that a small proportion of adsorbed GBL (perhaps on defect sites) does undergo ring-opening to produce CO, CO2, and H2. These results suggest that the primary dissociation pathway for GBL on Pd(111) is through O-C scission at the carbonyl position. Through comparisons with previously published studies of cyclic oxygenates, these results also demonstrate how ring strain and functionality affect the ring-opening rate and mechanism.;Next, 2,3-DHF and 2,5-DHF were studied on Pd(111) to identify how the chemistry of unsaturated cyclic ethers compares to that of the unsaturated cyclic esters discussed above. The results, paired with earlier computational results, indicate that 2,3-DHF and 2,5-DHF both adsorb on Pd(111) primarily via their respective olefin functional groups at low temperature (170 K). Both molecules undergo dehydrogenation by 248 K to form furan, which is detected in TPD as a major product of 2,3- and 2,5-DHF dehydrogenation, desorbing above 320 K. The furan intermediate can undergo decomposition to form C 3H3 and CO, eventually producing CO and hydrogen as decomposition products. In addition, benzene resulting from the combination of C3H 3 intermediate fragments is detected as a desorption product from both species, at about 520 K. A key difference between the two species is that 2,3-DHF can hydrogenate to produce tetrahydrofuran at about 330 K, whereas 2,5-DHF is more likely to dehydrogenate, producing furan at about 320 K.;Experimental results from work performed with a series of cyclic oxygenate species can be used to understand general trends regarding stability and reactivity of cyclic oxygenate species relating to various aspects of the ring structure, including the presence of an olefin group, ring size, and the identity of the oxygenate functional group, among others. Some of the significant conclusions of this work include: (1) Cyclic oxygenate molecules that contain an unsaturated C=C functional group prefer to adsorb on Pd(111) or Pt(111) primarily through their olefin. Saturated species adsorb more weakly through their oxygenate functionality. (2) Adsorption through an olefin group can serve to stabilize the ring structure against ringopening. The unsaturated species studied ring-open around 300 to 323 K, whereas the saturated species ring-open by 273 K or below. (3) A high degree of ring strain (such as for a 3-membered epoxide ring) leads to a low activation energy for ring-opening. A more stable ring (such as a 5-membered lactone) requires more thermal energy in order to undergo ring-opening. An understanding of the effects of ring structural characteristics may in turn lead to an improved ability to rationally design catalysts for high performance in a wide array of heterogeneous catalysis applications.
机译:已经进行了表面科学实验以研究催化金属表面上的一系列相关的环状含氧化合物。具体而言,已对2(5H)-呋喃酮(25HF),γ-丁内酯(GBL),2,5-二氢呋喃(2,5-DHF)和2,3-二氢呋喃(2,3-DHF)进行了热化学分析。在Pd(111)和Pt(111)单晶上吸附后进行了研究。高分辨率电子能量损失谱(HREELS)和程序升温脱附(TPD)是研究催化金属表面上每个分子的主要技术。;研究了25HF在钯(111)和铂(111)上的热表面化学性质第一。在<140 K的温度下将25HF吸附在每个表面上之后,将温度提高到300 K以上会导致呋喃酮环的打开和分解。在两个表面上,25HF均进行脱羰和脱氢反应,形成CO和H2作为主要的脱附产物。 Pd(111)和Pt(111)反应性之间的关键区别是从Pt(111)产生的CO2量相对较高,这表明25HF分解部分通过Pt(111)上的另一个表面中间体进行。 HREELS提供了进一步的迹象,表明反应是通过不同的途径进行的。在Pd(111)上,观察到直接脱羰成表面CO和乙炔。在Pt(111)上,提出了两种反应途径。一种途径与Pd(111)的反应途径相似,并在TPD期间产生CO,另一种途径通过保留OCO官能团并导致CO2作为解吸产物的中间体进行; GBL的吸附和热化学接下来研究Pd和Pt的(111)表面。 GBL与25HF的结构不同之处在于,没有C = C双键,因此可以确定饱和和不饱和键在开环化学中的作用。 HREELS结果表明GBL通过其含氧官能团在两个表面上均以160 K吸附。在Pd(111)上,吸附的GBL进行开环和273 K脱羰,从而产生吸附的CO和表面烃类。在Pt(111)上,使用HREELS观察到很少的解离,几乎所有GBL都简单地解吸。 TPD结果与Pd(111)上的脱羰和随后的脱氢反应一致,尽管也检测到少量的CO2。 Pt(111)的TPD结果表明,一小部分吸附的GBL(也许在缺陷位点)确实开环产生CO,CO2和H2。这些结果表明GBL在Pd(111)上的主要解离途径是通过羰基位置的O-C断裂。通过与以前发表的关于环状含氧化合物的研究进行比较,这些结果还证明了开环应变和官能度如何影响开环速率和机理。接下来,在Pd(111)上研究了2,3-DHF和2,5-DHF。确定不饱和环状醚的化学性质与上面讨论的不饱和环状酯的化学性质相比。结果与较早的计算结果配对,表明2,3-DHF和2,5-DHF均主要在低温下(<170 K)主要通过其各自的烯烃官能团吸附在Pd(111)上。两种分子都经过248 K的脱氢反应生成呋喃,在TPD中被检测为2,3-和2,5-DHF脱氢反应的主要产物,在320 K以上解吸。呋喃中间体可以分解形成C 3H3和CO最终产生CO和氢作为分解产物。此外,在大约520 K处检测到由C3H 3中间片段的结合产生的苯作为两种物质的解吸产物。两种物质之间的主要区别在于2,3-DHF可以在330左右的温度下氢化生成四氢呋喃。 K,而2,5-DHF更有可能脱氢,在约320 K时产生呋喃;使用一系列环状含氧化合物进行的实验结果可用于了解与环状含氧化合物相关的稳定性和反应性的一般趋势环结构的各个方面,包括烯烃基团的存在,环的大小和含氧官能团的身份等。这项工作的一些重要结论包括:(1)含有不饱和C = C官能团的环状含氧化合物分子倾向于主要通过其烯烃吸附在Pd(111)或Pt(111)上。饱和物质通过其含氧官能团吸收较弱。 (2)通过烯烃基团的吸附可以起到稳定环结构防止开环的作用。研究的不饱和物种在300至323 K左右开环,而饱和物种在273 K或以下时开环。 (3)较高的开环应变(例如3元环氧化物)导致开环的活化能低。较稳定的环(例如5元内酯)需要更多的热能才能进行开环。对环结构特征的影响的理解反过来可以导致提高合理设计催化剂的能力,以在各种非均相催化应用中实现高性能。

著录项

  • 作者

    Horiuchi, Clay Masao.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号