首页> 外文学位 >Infinite-dimensional backstepping for a class of parabolic distributed parameter systems.
【24h】

Infinite-dimensional backstepping for a class of parabolic distributed parameter systems.

机译:一类抛物线分布参数系统的无穷维反演。

获取原文
获取原文并翻译 | 示例

摘要

The dissertation addresses the problem of feedback boundary control for parabolic Partial Differential Equations (PDEs). The main idea in our approach is to construct a nonsingular coordinate transformation, a special application of backstepping, that allows to convert the original system into a new set of coordinates where one can design a control law that stabilizes the system.; We start with the example of an unstable heat equation. The stabilization is achieved by constructing a coordinate transformation that, if thought of as an integral transformation, has a feedback “kernel” that is a known continuous function. The limitation of the design with continuous kernel is that it cannot handle arbitrarily large level of the system instability.; We then present two designs for nonlinear parabolic PDEs in 1D. The first design is for stabilization of a solid propellant rocket burning instability modeled by a single 1D PDE, while the second one is for the boundary control of chemical tubular reactors modeled by a system of two coupled 1D PDEs. The two designs are conceptually similar (the former one has a modification that handles a nonlinear destabilizing boundary condition imposed at the uncontrolled boundary) and guarantee stability for any finite discretization in space of the original PDE models.; Using the experience from the design for the unstable heat equation, a modified approach with coordinate transformations that result in sufficiently regular kernels (not continuous but L) is developed for a class of linear parabolic PDEs motivated by engineering applications. The proposed design procedure can handle systems with an arbitrary finite number of open-loop unstable eigenvalues.; We then extend the design for nonlinear ID parabolic PDE systems to 2D in a systematic fashion for a 2D thermal convection loop. We also explain how to obtain the coordinate transforms and how to apply control for systems in 3D.; Finally, we show on the simulation examples for the heat convection loop, solid propellant rockets, and chemical tubular reactors that parabolic PDEs can be successfully stabilized for a variety of different simulation settings with low order backstepping controllers that use only a small number of state measurements.
机译:本文针对抛物型偏微分方程(PDE)的反馈边界控制问题进行了研究。我们方法的主要思想是构造一个非奇异的坐标变换,这是反步的一种特殊应用,它可以将原始系统转换为一组新的坐标,在其中可以设计出使系统稳定的控制定律。我们从一个不稳定的热方程的例子开始。通过构造坐标变换来实现稳定,如果将其视为积分变换,则该坐标变换具有作为已知连续函数的反馈“内核”。具有连续内核的设计的局限性在于它不能处理任意大级别的系统不稳定性。然后,我们为一维非线性抛物线形偏微分方程提出两种设计。第一个设计用于稳定由单个一维PDE建模的固体推进剂火箭燃烧的不稳定性,而第二个设计用于对由两个耦合的一维PDEs系统建模的化学管式反应堆进行边界控制。两种设计在概念上是相似的(前一种进行了修改,可以处理施加在不受控制的边界上的非线性不稳定边界条件),并保证了原始PDE模型空间中任何有限离散化的稳定性。利用不稳定热方程设计的经验,为一类开发了一种改进的方法,该方法具有坐标转换,可以产生足够规则的内核(不是连续的,而是 L )工程应用推动的线性抛物线偏微分方程的建立。所提出的设计程序可以处理具有任意有限数量的开环不稳定特征值的系统。然后,我们以系统方式将2D热对流回路的非线性ID抛物线PDE系统的设计扩展到2D。我们还将说明如何获取坐标变换以及如何在3D系统中应用控制。最后,我们在热对流回路,固体推进剂火箭和化学管式反应堆的仿真示例中表明,抛物线式偏微分方程可以通过仅使用少量状态测量值的低阶反推控制器就各种不同的仿真设置成功地稳定下来。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号