首页> 外文学位 >Fermentation kinetics and modeling of non-growing Clostridium thermocellum JW20.
【24h】

Fermentation kinetics and modeling of non-growing Clostridium thermocellum JW20.

机译:非生长的热纤梭菌JW20的发酵动力学和建模。

获取原文
获取原文并翻译 | 示例

摘要

Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly ferment cellulose into ethanol. The use of non-growing C. thermocellum cells may have potential for industrial applications, but their multiproduct-fermentation characteristics have not been well studied. The overall objective of this study was to quantify end-product formation by nongrowing C. thermocellum cells metabolizing the soluble sugar cellobiose and to develop kinetic models to represent/explain the experimental observations.; Batch and fed batch fermentations with varying cellobiose availability were conducted. An initial cellobiose concentration of 16 mM was sufficient to achieve the maximal ethanol concentration (∼14.5 mM) in static batch fermentation with 3.2 OD600 initial cell density, however significant amounts of lactate (21.3 mM) were produced. Stirring favored acetate production (acetate/ethanol ratio increased from 0.29 to 1.46) and reduced lactate production (lactate/ethanol ratio decreased from 2.85 to 0.82). A constant stirred fed-batch process (SCFR between 0.39 and 1.17 mmole cellobiose/g cells/h) was found to maximize ethanol production (∼25 mM adjusted ethanol concentration) while lowering lactate production and prolong the length of time the cells actively produce end-products.; Growing and non-growing C. thermocellum batch cultures were treated with various exogenous ethanol concentrations from 0 to 870 mM. The specific growth rate and the final cell concentrations decreased by ∼69% and ∼42%, respectively under 217 mM ethanol concentration while the cellobiose consumption and acetate production stayed the same. The overall critical ethanol concentration which completely inhibited cellobiose intake was approximately 652 mM.; Batch and constant fed-batch kinetic models were developed based on an approach which extended beyond the simple material balance normally done for yeast fermentation. For the batch model, the rate of change of specific product formation followed first order kinetics, but the inactivation coefficient varied by product. For the constant fed-batch model, the specific cellobiose feeding rate and specific lumped intracellular materials (SLIM) controlled the specific production rates of ethanol, acetate and lactate and the cellular intake rate of cellobiose. Ethanol inhibition kinetics were incorporated into the batch model by adjusting the model parameters accordingly. The overall performance of the models were satisfactory.
机译:热纤梭菌是一种厌氧,嗜热细菌,可以直接将纤维素发酵成乙醇。非生长的热纤梭菌细胞的使用可能具有工业应用潜力,但尚未对其多产物发酵特性进行充分研究。这项研究的总体目标是通过不生长的热纤梭菌细胞代谢可溶的糖纤维二糖来量化最终产物的形成,并建立动力学模型来代表/解释实验观察结果。进行具有不同纤维二糖可用性的分批和补料分批发酵。最初的纤维二糖浓度为16 mM,足以在静态分批发酵中以3.2 OD600的初始细胞密度达到最大乙醇浓度(〜14.5 mM),但是产生了大量的乳酸(21.3 mM)。搅拌有利于乙酸盐的产生(乙酸盐/乙醇的比率从0.29增加到1.46)和降低乳酸盐的产生(乳酸/乙醇的比率从2.85减少到0.82)。发现恒定的搅拌分批补料过程(SCFR在0.39至1.17 mmol纤维二糖/ g细胞/ h之间)可最大程度地提高乙醇产量(约25 mM调整后的乙醇浓度),同时降低乳酸的产生并延长细胞主动产生结膜的时间长度-产品。生长的和不生长的热纤梭菌分批培养物均用0至870 mM的各种外源乙醇浓度处理。在217 mM乙醇浓度下,比生长速率和最终细胞浓度分别降低了约69%和约42%,而纤维二糖的消耗和乙酸盐的产生保持不变。完全抑制纤维二糖摄入的总临界乙醇浓度约为652 mM。分批和恒定分批补料动力学模型是基于一种方法开发的,该模型扩展到了通常用于酵母发酵的简单物料平衡之外。对于批处理模型,特定产物形成的变化速率遵循一阶动力学,但失活系数随产物而变化。对于恒定的分批补料模型,特定的纤维二糖进料速率和特定的集总细胞内物质(SLIM)控制着乙醇,乙酸盐和乳酸的特定生产率以及纤维二糖的细胞摄入速率。通过相应地调整模型参数,将乙醇抑制动力学纳入批处理模型中。模型的整体性能令人满意。

著录项

  • 作者

    Tarhan, Sefa.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Biology Microbiology.; Engineering Agricultural.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;农业工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号