首页> 外文学位 >Mechanical implications of the arthropod exoskeleton microstructures and the mechanical behavior of the bioinspired composites.
【24h】

Mechanical implications of the arthropod exoskeleton microstructures and the mechanical behavior of the bioinspired composites.

机译:节肢动物外骨骼微结构的机械含义以及受生物启发的复合材料的机械性能。

获取原文
获取原文并翻译 | 示例

摘要

Many biological materials possess complicated hierarchical and multiscale structures, after millions of years of evolution. Most of them also demonstrate outstanding mechanical properties, along with multi-functionality. Arthropod is the most widely distributed and the largest phylum of animals in the planet. Their exoskeletons are well-known for excellent mechanical performance and versatility, and consequently emerge among the best sources to study and uncover the mystery of nature in devising its own material systems.;This work first investigated the microstructures of the exoskeletons from selected arthropods, including Homarus Americanus, Callinectes sapidus and Popillia japonica, which exhibit highly complex but interesting hierarchical structures. Exoskeletons are chitin-protein based material systems organized into horizontally well-defined multi-region and multi-layer patterns, with elaborate structures interweaving in the vertical direction. Using SEM (Scanning Electron Microscope) and TEM (Transmission Electron Microscope), the characteristic and distinctive structural features of the exoskeletons were revealed for all the species investigated. In particular, distinct patterns (e.g., stacking sequence of multiple layers) were identified in each region of exoskeletons studied. For example, the “helicoidal structure” is characterized by a stacking sequence in which layers are continuously and unidirectionally rotating a small angle with respect to their adjacent layers. Important mechanical implications of those unique structural features were subsequently evaluated and compared using mechanics-based modeling and analysis, as well as numerical simulation.;After the structure-property-function relationship of the investigated biomaterial systems was established, attempts were made to reveal and extract the design strategies employed by nature in designing its own materials and structures. One of the most predominant structural patterns observed in the investigated exoskeletons, the helicoidal structure, was incorporated in the design and manufacture of the subsequent bio-inspired laminated composites. The mechanical performance of the resulted composites was evaluated and significant improvement over the traditional man-made structures was observed.;This original research work encompassed a full cycle for a particular bioinspired material development, starting from the bio-material structure observation, the corresponding mechanical modeling and analysis, and the final bio-inspired composite design, manufacture and evaluation. Important knowledge on the microstructures of the investigated exoskeletons was established or clarified, and their mechanical implications were revealed for the first time based on appropriate modeling and simulation. The resulted bio-inspired composites demonstrate superior mechanical performance over the traditional composite structure widely used in industry, thus possess the potential for future practical application.
机译:经过数百万年的进化,许多生物材料都具有复杂的层次和多尺度结构。它们中的大多数还表现出出色的机械性能以及多功能性。节肢动物是地球上分布最广,最大的动物门。它们的外骨骼以出色的机械性能和多功能性而闻名,因此成为研究和发现自然界奥秘的最佳资料来源,他们设计了自己的材料系统。这项工作首先研究了选自节肢动物的外骨骼的微观结构,包括 Homarus Americanus,Callinectes sapidus Popillia japonica 具有高度复杂但有趣的层次结构。外骨骼是基于几丁质蛋白的材料系统,组织成水平清晰的多区域和多层图案,其精细的结构在垂直方向上交织在一起。使用SEM(扫描电子显微镜)和TEM(透射电子显微镜),揭示了所有研究物种的外骨骼的特征和独特的结构特征。特别地,在所研究的外骨骼的每个区域中识别出不同的模式(例如,多层的堆叠序列)。例如,“螺旋结构”的特征在于堆叠顺序,其中各层相对于其相邻层连续且单向旋转小角度。随后,使用基于力学的建模和分析以及数值模拟对这些独特结构特征的重要机械含义进行了评估和比较。;在建立了所研究生物材料系统的结构-特性-功能关系之后,尝试揭示和发现提取自然界在设计自己的材料和结构时采用的设计策略。在研究的外骨骼中观察到的最主要的结构模式之一,即螺旋结构,被并入了随后的生物启发的层压复合材料的设计和制造中。评估了所得复合材料的机械性能,并观察到了与传统人造结构相比的显着改进。;这项原始的研究工作包括从生物材料结构观察到相应的机械性能,开始了特定生物启发材料开发的整个周期。建模和分析,以及最终的生物启发性复合材料的设计,制造和评估。建立或阐明了有关被研究骨骼的微观结构的重要知识,并基于适当的建模和模拟首次揭示了它们的力学含义。所得的生物启发型复合材料具有优于工业上广泛使用的传统复合材料结构的优异机械性能,因此具有未来实际应用的潜力。

著录项

  • 作者

    Cheng, Liang.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Mechanical.;Biophysics Biomechanics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号