首页> 外文学位 >New materials for advanced biomaterial applications.
【24h】

New materials for advanced biomaterial applications.

机译:用于先进生物材料应用的新材料。

获取原文
获取原文并翻译 | 示例

摘要

The work described in this thesis focuses on the design, synthesis, and characterization of novel polyphosphazenes for advanced biomedical applications. In addition, the fabrication of polyphosphazene / poly(lactic-co-glycolic acid) (PLGA) blends were examined for their physical properties as hard tissue engineering scaffolds.;Chapter 2 discusses the synthesis of the dipeptides alanyl-glycine ethyl ester, valinyl-glycine ethyl ester, and phenylalanyl-glycine ethyl esters. The alanyl-glycine ethyl ester replaced all the chlorine atoms in poly(dichlorophosphazene). However, replacement of all the chlorine atoms in poly(dichlorophosphazene) by valinyl-glycine ethyl ester or phenylalanyl-glycine ethyl ester polyphosphazenes was prevented by the insolubility of the partially substituted intermediates. To circumvent this problem, co-substitution was carried out using the valinyl- or phenylalanyl esters with glycine ethyl ester or alanine ethyl ester in a 1:1 ratio. Co-substituted polyphosphazenes with alanyl glycine ethyl ester and glycine ethyl ester or alanine ethyl ester were also synthesized with a side group ratio of 1:1.;Chapter 3 outlines the preparation of phosphazene tissue engineering scaffolds with bioactive side groups using the biological buffer choline chloride. The phosphazene structures and physical properties were studied using multinuclear NMR, differential scanning calorimetry (DSC), and GPC techniques. The resultant polymers were then blended with PLGA (50:50) or PLGA (85:15) and characterized by DSC analysis and scanning electron microscopy (SEM). Polymer products obtained via the sodium hydride route produced miscible blends with both ratios of PLGA, while the cesium carbonate route yielded products with reduced blend miscibility.;Chapter 4 describes the preparation of phosphazenes that possess reversible cross-linking groups to control mechanical stability and hydrolysis using cysteine and methionine amino acid side groups. Small molecule models and linear polymeric phosphazenes that contain methionine ethyl ester and cysteine ethyl disulfide ethyl ester side groups were synthesized. Protection of the free thiol groups was carried out to circumvent unwanted cross-linking of the phosphazenes through the cysteine ethyl ester N- and S-termini. Cyclic trimeric cysteine ethyl disulfide ethyl ester model compounds were deprotected by S-S bond cleavage using beta-mercaptoethanol, dithiothreitol (DTT), and zinc in aqueous hydrochloric acid.;Chapter 5 evaluates the first reported synthesis of a completely hydrolysable polyphosphazene-containing block co-polymer. The synthesis of poly(lactic acid)-co-poly[(bis-alanine ethyl ester phosphazene)], poly(lactic acid)-co-poly[(bis-valine ethyl ester phosphazene)], and poly(lactic acid)-co-poly[(bis-phenylalanine ethyl ester phosphazene)] has been accomplished. These block co-polymers were used as blend compatibalizers to form composites of PLAGA (50:50) or PLAGA (85:15) with poly[(bis-alanine ethyl ester phosphazene)], poly[(bis-valine ethyl ester phosphazene)], or poly[(bis-phenylalanine ethyl ester phosphazene)].;Chapter 6 discusses a unique polymer erosion process for biodegradable biomaterials through which the polymer changes from a solid coherent film to an assemblage of microspheres with interconnected porous structures. The polymer system was developed on the highly versatile platform of self-neutralizing polyphosphazene-polyester blends. Co-substituting a polyphosphazene backbone with both glycylglycine dipeptide and with side groups that can retard the polymer degradation, such as hydrophobic 4-phenylphenoxy, generated a unique polymer with strong hydrogen bonding ability and a slow degradation rate.The blend degradation was further investigated in vivo using a rat subcutaneous implantation model.;Chapter 7 describes a series of closely related polyphosphazenes with propoxy, pentoxy, hexoxy, octoxy, isostearyloxy, and 2-(2-methoxyethoxy)ethoxy (MEE) side groups, together with co-substituent species with both the alkoxy and MEE side chains. These were studied for their morphology and miscibility with oligoisobutylene (OIB). When both alkoxy and MEE side groups were present, the solubility in OIB was also low (0-3%), except for the species with both isostearyloxy and MEE side groups, which was soluble in OIB at a level of 21 wt/wt% at 80°C, and showed Tg evidence of polymer/oligomer miscibility even at -80°C. Explanations are suggested for the unusual behavior of this polymer. (Abstract shortened by UMI.)
机译:本文描述的工作重点是用于先进生物医学应用的新型聚磷腈的设计,合成和表征。此外,还研究了聚磷腈/聚乳酸-乙醇酸共聚物(PLGA)共混物作为硬组织工程支架的物理性能。;第2章讨论了二肽丙氨酰-甘氨酸乙酯,缬氨酰-二肽的合成。甘氨酸乙酯和苯丙氨酰甘氨酸乙酯。丙氨酰-甘氨酸乙酯代替了聚二氯磷腈中的所有氯原子。然而,由于部分取代的中间体的不溶性,阻止了用戊基-甘氨酸乙酯或苯丙氨酰基-甘氨酸乙酯多磷腈取代聚二氯磷腈中的所有氯原子。为了解决该问题,使用缬氨酰基-或苯丙氨酸酯与甘氨酸乙酯或丙氨酸乙酯以1:1的比例进行共取代。还合成了侧基比为1:1的共取代的聚磷腈与丙氨酰甘氨酸乙酯和甘氨酸乙酯或丙氨酸乙酯的混合物;第3章概述了使用生物缓冲胆碱制备具有生物活性侧基的磷腈组织工程支架。氯化物。使用多核NMR,差示扫描量热法(DSC)和GPC技术研究了磷腈的结构和物理性质。然后将所得聚合物与PLGA(50:50)或PLGA(85:15)共混,并通过DSC分析和扫描电子显微镜(SEM)进行表征。通过氢化钠途径获得的聚合物产物可生成两种PLGA比例的可混溶共混物,而碳酸铯途径所制得的产物具有降低的混溶性。;第4章介绍了具有可逆交联基团以控制机械稳定性和水解的磷腈的制备。使用半胱氨酸和蛋氨酸的氨基酸侧基。合成了包含甲硫氨酸乙酯和半胱氨酸二硫醚乙酯侧基的小分子模型和线性聚合磷腈。进行游离硫醇基团的保护以避开磷腈通过半胱氨酸乙酯N-和S-末端的不希望的交联。在盐酸水溶液中,使用β-巯基乙醇,二硫苏糖醇(DTT)和锌,通过SS键断裂,将环状三聚半胱氨酸二硫化乙基乙酯模型化合物脱保护。第5章评估了首次报道的完全可水解的含聚磷腈嵌段共聚物的合成。聚合物。聚(乳酸)-共聚[(双丙氨酸乙酯膦腈)],聚(乳酸)-共聚[(双缬氨酸乙酯膦腈)]和聚(乳酸)-的合成共聚[(双-苯丙氨酸乙酯膦腈)]已经完成。这些嵌段共聚物用作共混相容剂,以形成PLAGA(50:50)或PLAGA(85:15)与聚[(双丙氨酸乙酯膦腈)],聚[(双缬氨酸乙酯磷腈)的复合物],或聚[(双-苯丙氨酸乙酯磷腈)]。第6章讨论了可生物降解的生物材料的独特聚合物腐蚀过程,通过该过程,聚合物从固体粘结膜变为具有相互连接的多孔结构的微球体。该聚合物体系是在高度中和的自中和聚磷腈-聚酯共混物平台上开发的。将聚磷腈主链与甘氨酰甘氨酸二肽和具有可阻止聚合物降解的侧基(例如疏水性4-苯基苯氧基)共取代,生成具有强氢键合能力和缓慢降解速率的独特聚合物。第7章描述了一系列紧密相关的聚磷腈,它们具有丙氧基,戊氧基,己氧基,辛氧基,异硬脂基氧基和2-(2-甲氧基乙氧基)乙氧基(MEE)侧基,以及共取代基同时带有烷氧基和MEE侧链。研究了它们的形态和与低聚异丁烯(OIB)的混溶性。当同时存在烷氧基和MEE侧基时,在OIB中的溶解度也较低(0-3%),除了同时具有异硬脂基氧基和MEE侧基的物质均以21 wt / wt%的水平溶于OIB的情况下在80°C的温度下,即使在-80°C时也显示出聚合物/低聚物混溶性的Tg证据。建议解释这种聚合物的异常行为。 (摘要由UMI缩短。)

著录项

  • 作者

    Weikel, Arlin Lee.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号