首页> 外文学位 >Energy conversion via ferroic materials: Materials, mechanisms, and applications.
【24h】

Energy conversion via ferroic materials: Materials, mechanisms, and applications.

机译:通过铁性材料的能量转换:材料,机理和应用。

获取原文
获取原文并翻译 | 示例

摘要

Energy conversion is a process converting one form of energy into another. Significant research effort has been dedicated to energy conversion mechanisms for portable energy conversion. Specifically, mechanisms based on ferroic materials have been widely explored for this goal.;Ferroic materials include ferromagnetic, ferroelectric and ferroelastic materials. This thesis is focused on two ferroic materials: ferromagnetic TbxDy1-xFe2 (x ∼ 0.3, Terfenol-D), and ferroelectric barium strontium titanate (BST) including its paraelectric phase, for their energy conversion mechanisms. We grew and characterized these materials, followed by device fabrication to study potential energy conversion mechanisms in resulting devices.;With Terfenol-D, we demonstrated a wireless energy-conversion process via the Villari effect, i.e. magnetic flux change induced by mechanical input. A new technique of transfer-printing a Terfenol-D film onto a flexible substrate was developed to study this mechanism. The transferred Terfenol-D showed a high saturation magnetization (∼ 1.3 T) and flexibility (strain ∼ 1.9 %). Subsequently, the Villari effect was successfully utilized to convert mechanical energy, from a mechanical source and a simulated biomechanical source, into electricity.;For next projects, another ferroic material, a high-permittivity (dielectric constant ∼ 200) BST was sputtered on Pt/SiO2/Si or stainless steels to form a metal-insulator(BST)-metal heterostructure. The BST was found to be paraelectric when grown upon Pt/SiO2/Si, whereas it was ferroelectric when grown on the stainless steel. Two different mechanisms were therefore studied on these two modifications.;In the paraelectric BST we found a new thermal-electric response via a flexoelectricity-mediated mechanism, which was enabled by a large strain gradient (> 104/m) produced by lattice mismatch. With the enhanced flexoelectricity from the large strain gradient, electrical output was generated under thermal cycling, showing a new approach for thermal-electrical conversion. A theoretical model was also developed to understand this mechanism.;We also observed a photovoltaic effect on the ferroelectric BST grown on stainless steel. The high-permittivity and the crystalline structure were preserved, with additional flexibility obtained (strain ∼ 0.25%). The photovoltaic effect was verified and characterized with different illumination sources. A flexible imager was then demonstrated via the photovoltaic effect.;Finally, the outlook for further studies of these mechanisms is discussed.
机译:能量转换是将一种能量形式转换为另一种能量的过程。对于便携式能量转换的能量转换机制已经进行了大量研究工作。具体而言,已广泛探索了基于铁磁性材料的机理以实现该目标。铁磁性材料包括铁磁,铁电和铁弹性材料。本文主要研究两种铁材料:铁磁性的TbxDy1-xFe2(x〜0.3,Terfenol-D)和铁电的钛酸钡锶钛酸盐(BST),包括其顺电相,作为它们的能量转换机理。我们对这些材料进行了生长和表征,然后进行了设备制造,以研究最终设备中潜在的能量转换机制。;使用Terfenol-D,我们通过比利亚里效应演示了无线能量转换过程,即机械输入引起的磁通量变化。为了研究这种机理,开发了一种将Terfenol-D薄膜转印到柔性基材上的新技术。转移的Terfenol-D表现出高饱和磁化强度(约1.3 T)和柔韧性(应变约1.9%)。随后,成功地利用了比利亚里效应将机械能和模拟生物力学源的机械能转换为电能。;在接下来的项目中,另一种铁性材料是在Pt上溅射了高介电常数(介电常数〜200)的BST。 / SiO2 / Si或不锈钢形成金属绝缘体(BST)-金属异质结构。发现BST在Pt / SiO2 / Si上生长时是顺电的,而在不锈钢上生长时是铁电的。因此,对这两种修改方式研究了两种不同的机制。在顺电BST中,我们通过柔电介导的机制发现了新的热电响应,这是由晶格失配产生的大应变梯度(> 104 / m)引起的。随着大应变梯度的增强柔性电的产生,在热循环下产生了电输出,这表明了一种热电转换的新方法。还建立了一个理论模型来理解这种机理。我们还观察到了对不锈钢上生长的铁电BST的光电效应。保留了高介电常数和晶体结构,并获得了额外的柔韧性(应变约0.25%)。通过不同的照明源验证了光伏效应并对其进行了表征。然后通过光电效应展示了柔性成像仪。最后,讨论了进一步研究这些机理的前景。

著录项

  • 作者

    Chin, Huai-An.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Electrical engineering.;Materials science.;Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:46:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号