首页> 外文学位 >Non-Destructive Viscoelasticity Microscopy: A Spectroscopic Approach Using Dual Brillouin/Raman Scattering Processes
【24h】

Non-Destructive Viscoelasticity Microscopy: A Spectroscopic Approach Using Dual Brillouin/Raman Scattering Processes

机译:无损粘弹性显微镜:使用布里渊/拉曼双重散射过程的光谱方法

获取原文
获取原文并翻译 | 示例

摘要

The tremendous progress in life sciences and medicine has been greatly facilitated by the development of new imaging modalities. The elastic properties of molecules, subcellular and cellular structures play a crucial role in many areas of biology and medicine. Tissue elasticity has recently been recognized as a critical regulator of cell behavior, with clear roles in embryogenesis, tissue morphogenesis and stem cell differentiation, as well as contributing to pathologies such as tumor progression, coronary artery disease and tissue scarring. This dissertation is focused on developing a novel instrumentation to image viscoelastic properties of cells and tissues using Brillouin microspectroscopy. Following design, construction and optimizations that maximize the signal quality, we obtained the highest resolution Brillouin imaging system in a confocal backscattering arrangement suitable for bio-imaging applications. Furthermore, a powerful combination of Brillouin and Raman spectroscopies has yielded a confocal microscope capable of performing simultaneous mechanical and chemical imaging in a non-invasive and non-contact manner.;The novel instrument was optimized and validated for several biomedical applications. For example, we demonstrated that Brillouin spectroscopy is capable of performing in-vivo measurements of the mechanical properties of artificial biocompatible materials such as photocrosslinkable gelatin methacrylate (GelMA). With the assistance of animal models of human congenital muscular dystrophies, we show that Brillouin spectroscopy can serve as a unique diagnosis tool, which can detect differences in muscle elasticity even between very similar muscular dystrophy genotypes. We have also demonstrated that Brillouin spectroscopy is an invaluable approach in developmental biology since it is capable of making non-destructive imaging of an embryo's elasticity during its development process, which is crucial to understand the formation of many essential organs such as bone and brain.;In summary, we have developed a novel instrument for biomedical imaging sensing, which is compatible with other microscopic imaging modalities and is specific to local elasticity. Numerous applications of this new technology have been explored, and the instrument's performance was validated for several systems.
机译:新型成像方式的发展极大地促进了生命科学和医学领域的巨大进步。分子,亚细胞和细胞结构的弹性特性在生物学和医学的许多领域都起着至关重要的作用。组织弹性最近被认为是细胞行为的关键调节剂,在胚胎发生,组织形态发生和干细胞分化中具有明确的作用,并促进诸如肿瘤进展,冠状动脉疾病和组织瘢痕形成等病理。本论文致力于开发一种新型的仪器,利用布里渊显微光谱技术对细胞和组织的粘弹性进行成像。经过旨在使信号质量最大化的设计,构造和优化,我们获得了适用于生物成像应用的共聚焦背散射装置中最高分辨率的布里渊成像系统。此外,布里渊(Brillouin)和拉曼(Raman)光谱学的强大结合已经产生了一种共聚焦显微镜,该显微镜能够以非侵入性和非接触方式同时进行机械和化学成像。;该新型仪器已针对多种生物医学应用进行了优化和验证。例如,我们证明了布里渊光谱法能够对人造生物相容性材料(例如可光交联的甲基丙烯酸明胶(GelMA))的机械性能进行体内测量。借助人类先天性肌营养不良症的动物模型,我们证明了布里渊光谱法可以作为一种独特的诊断工具,即使在非常相似的肌营养不良症基因型之间,也可以检测出肌肉弹性的差异。我们还证明了布里渊光谱法是发育生物学中的一种宝贵方法,因为它能够对胚胎在发育过程中的弹性进行非破坏性成像,这对于理解许多重要器官(例如骨骼和大脑)的形成至关重要。 ;总而言之,我们开发了一种用于生物医学成像传感的新型仪器,该仪器与其他显微成像模式兼容,并且特定于局部弹性。已经探索了这项新技术的众多应用,并且该仪器的性能已在多个系统中得到验证。

著录项

  • 作者

    Meng, Zhaokai.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Biomedical engineering.;Optics.;Biophysics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:46:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号