首页> 外文学位 >Photochemical modification of poly(ether sulfone) ultrafiltration membranes by UV-assisted graft polymerization for the prevention of biofouling.
【24h】

Photochemical modification of poly(ether sulfone) ultrafiltration membranes by UV-assisted graft polymerization for the prevention of biofouling.

机译:紫外线辅助接枝聚合对聚醚砜超滤膜进行光化学改性,以防止生物污染。

获取原文
获取原文并翻译 | 示例

摘要

Membranes are widely used by the biotechnology industry in the separation and recovery of proteins from biological solutions. Fouling of membrane surfaces by irreversible protein adsorption during ultrafiltration causes loss of membrane permeability and can reduce membrane selectivity and lead to significant product loss through denaturation. In this work, low fouling poly(ether sulfone) (PES) ultrafiltration membranes were produced by ultraviolet (UV) assisted graft polymerization of hydrophilic vinyl monomers using a newly developed photochemical dip modification technique. This technique was developed to make the UV modification process more easily adaptable to continuous membrane manufacturing processes. A method was also developed to measure and track the degree of polymer grafting on the membrane surface using attenuated total reflection Fourier transform infrared spectroscopy (FTIR/ATR). Grafting the hydrophilic monomer N-vinyl-2-pyrrolidinone (NVP) onto the membrane surface increased surface wettability and produced membranes with the high wettability of regenerated cellulose membranes. The enhanced surface wettability significantly decreased irreversible adsorptive fouling during the filtration of the protein bovine serum albumin (BSA). In order to maintain the rejection of BSA after modification, PES chain scission was tightly controlled by regulating the UV wavelength range and the light intensity used. The UV reactor system was operated with 300 nm UV lamps and a benzene filter used to remove high energy wavelengths below 275 nm that were determined to cause severe loss of BSA rejection due to pore enlargement from extensive chain scission. Dip modification caused membrane permeability to decrease due to the grafted chains blocking the membrane pores. The use of a chain transfer agent during modification followed by ethanol cleaning increased modified membrane permeability, but BSA rejection was severely decreased. The resultant membranes produced by dip modification using this new UV reactor configuration exhibited higher rejection, similar permeability, and similar irreversible fouling as regenerated cellulose membranes, the lowest fouling commercial ultrafiltration membranes currently available. Therefore, these modified membranes can be used as an alternative to regenerated cellulose membranes in the ultrafiltration of protein solutions.
机译:膜已被生物技术行业广泛用于从生物溶液中分离和回收蛋白质。超滤过程中不可逆的蛋白质吸附会污染膜表面,从而导致膜渗透性降低,并降低膜的选择性,并通过变性导致明显的产物损失。在这项工作中,使用新开发的光化学浸涂改性技术,通过亲水性乙烯基单体的紫外线(UV)辅助接枝聚合反应,生产出了低污染的聚醚砜(PES)超滤膜。开发该技术是为了使UV改性过程更易于适应连续膜制造过程。还开发了一种使用衰减全反射傅里叶变换红外光谱(FTIR / ATR)来测量和跟踪膜表面上聚合物接枝程度的方法。将亲水性单体N-乙烯基-2-吡咯烷酮(NVP)接枝到膜表面可提高表面润湿性,并制得具有再生纤维素膜高润湿性的膜。增强的表面润湿性显着降低了蛋白牛血清白蛋白(BSA)过滤过程中不可逆的吸附结垢。为了保持修饰后对BSA的排斥,通过调节所用的UV波长范围和光强度来严格控制PES断链。紫外线反应器系统使用300 nm紫外线灯和用于除去275 nm以下的高能波长的苯滤光片操作,该高能波长被确定会由于广泛的断链导致孔扩大而导致严重BSA排斥损失。由于接枝的链阻塞了膜孔,浸渍改性导致膜的渗透性降低。在改性过程中使用链转移剂,然后进行乙醇清洗,可提高改性膜的渗透性,但BSA截留率却大大降低。使用这种新的UV反应器配置通过浸涂改性生产的所得膜与再生纤维素膜相比,具有更高的截留率,相似的渗透性和相似的不可逆结垢,这是目前可获得的最低结垢的商业超滤膜。因此,在蛋白质溶液的超滤中,这些改性的膜可用作再生纤维素膜的替代物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号