首页> 外文学位 >Photobioreactor cultivation of the cell and tissue cultures derived from marine red macroalga Agardhiella subulata.
【24h】

Photobioreactor cultivation of the cell and tissue cultures derived from marine red macroalga Agardhiella subulata.

机译:光生物反应器培养源自海洋红巨藻Agardhiella subulata的细胞和组织培养物。

获取原文
获取原文并翻译 | 示例

摘要

Macrophytic marine algae are a rich source of unique natural products. Controlled biological production of these compounds first requires the development of an engineered biomass production system to illustrate the application of bioprocess engineering principles to this new area of marine biotechnology. Toward this end, two axenic liquid suspension cultures were established for Agardhiella subulata, including an undifferentiated filament clump culture established by induction of callus-like tissue from thallus explants, and a microplantlet culture established by regeneration of callus filaments. The microplantlet culture was selected for bioreactor cultivation studies because it was morphologically stable.; Controlled cultivation of Agardhiella subulata microplantlet suspension was successful in both externally-illuminated bubble-column and stirred-tank bioreactors. Limiting process parameters on biomass production, including temperature, pH, CO2 delivery, light transfer, macronutrient consumption, agitation intensity, and microplantlet morphology were assessed. The optimal growth temperature was 24°C. The optimal pH environment for cultivation was centered around pH 8. The growth was not CO2-limited in either bioreactor system when aerated at 0.3 vvm containing 3500 ppm CO 2 in the aeration gas. Light transfer limitations were addressed by comparing the mean light intensity (Im) to the light intensity at 63% of photosynthetic saturation (Ik). The optimal photoperiod was 16:8 LD. The biomass yield coefficients based on N and P during the bioreactor cultivation were 1.0 gDCW/mmol N and 26.0 gDCW/mmol P respectively. Medium perfusion rate of 20% per day during bioreactor cultivation prevented nitrate and phosphate depletion, maintained the specific oxygen evolution rate at 0.12 mmol O2 g−1 DCW h−1, and prolonged active growth phase. Two exponential phases of growth were observed during prolonged biomass production under resource-saturated conditions. Bubble aeration did not fragment the plantlets. Impeller rotation rates from 60 and 250 rpm in the 500 mL, stirred tank bioreactor did not affect the specific growth rate during the exponential phase of growth.
机译:大型植物藻类是独特天然产物的丰富来源。这些化合物的受控生物生产首先需要开发工程化的生物质生产系统,以说明生物工艺工程原理在海洋生物技术这一新领域中的应用。为此,针对 Agardhiella subulata 建立了两种无菌液体悬浮培养物,包括通过诱导来自th体外植体的愈伤组织样组织而建立的未分化细丝团块培养物,以及通过再生愈伤组织细丝而建立的微植物培养物。 。选择微植株培养物用于生物反应器培养研究,因为它在形态上是稳定的。在外部照明的气泡柱反应器和搅拌罐生物反应器中, subardata 微植物悬浮液的控制栽培均获得成功。评估了限制生物量生产的工艺参数,包括温度,pH,CO 2 传递,光传输,大量养分消耗,搅拌强度和小植物形态。最佳生长温度为24°C。最佳的培养pH环境集中在pH 8左右。当以0.3 vvm的空气中含有3500 ppm CO 2 的空气曝气时,任一生物反应器系统的生长均不受CO 2 限制。充气气体。通过将平均光强度( I m )与光合作用饱和度63%( I k )。最佳光周期为16:8 LD。在生物反应器培养过程中,基于氮和磷的生物量产量系数分别为1.0 gDCW / mmol N和26.0 gDCW / mmolP。在生物反应器培养过程中,每天20%的中等灌注速率可防止硝酸盐和磷酸盐的消耗,将比氧释放速率维持在0.12 mmol O 2 g -1 DCW h -1 ,并延长了活跃的生育期。在资源饱和条件下延长生物量生产期间,观察到两个指数阶段的增长。气泡通气不会使小植株破碎。在500毫升搅拌槽生物反应器中,叶轮的转速从60和250 rpm不影响生长的指数阶段的比生长速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号