首页> 外文学位 >Nonlinear synthesis of compliant mechanisms: Topology and size and shape design.
【24h】

Nonlinear synthesis of compliant mechanisms: Topology and size and shape design.

机译:顺应性机制的非线性综合:拓扑,大小和形状设计。

获取原文
获取原文并翻译 | 示例

摘要

Many artifacts made by humans are designed to be strong and rigid to keep their shape by resisting deformation. In contrast, nature prefers flexible bodies and tends to accept deformation rather than prevent it except for special applications—bones, teeth, and so forth. A compliant mechanism is a single piece flexible mechanism that depends on elastic deformation of its members to transfer force or motion. Using designs in nature as motivation, this research developed a mathematical, hence computational, framework for design of compliant mechanisms that are suitable for a large range of motion.; Compliant mechanisms here are designed in two stages; (a) topology synthesis and (b) size and shape synthesis. The topology design yields a kinematically feasible configuration to produce the desired output motion under the action of applied input and adequate stiffness to withstand external loading. A multi-objective function is defined as maximizing geometric advantage (= output displacement/input displacement) over strain energy is formulated. Next, the size and shape design is performed to satisfy performance criteria such as stress, buckling constraints, etc. using an objective function that maximizes geometrical advantage. These two design stages are carried out based on geometric nonlinear formulations. This nonlinear formulation is implemented using finite beam element and Newton-Raphson method and solved using sequential linear programming and sequential quadratic programming methods, respectively. The topology design procedure is capable of handling both two-dimensional problems as well as three-dimensional problems that enables us to design more sophisticated mechanisms. Additionally, a parametric study of the effect of design variables on the objective function is carried out and scaling laws are investigated.
机译:人类制造的许多人工制品被设计成坚固而刚性的,以通过抵抗变形来保持其形状。相反,除了骨骼,牙齿等特殊应用外,自然更喜欢柔性体,并且倾向于接受变形而不是阻止变形。柔性机构是单件式柔性机构,其依赖于其构件的弹性变形来传递力或运动。以自然界中的设计为动机,本研究开发了一种数学上的计算框架,用于设计适合于大运动范围的顺应性机构。这里的兼容机制分为两个阶段: (a)拓扑合成和(b)尺寸和形状合成。拓扑设计产生了运动学上可行的配置,可以在施加的输入的作用下产生所需的输出运动,并具有足够的刚度以承受外部载荷。多目标函数被定义为在应变能之上最大化几何优势(=输出位移/输入位移)。接下来,使用最大化几何优势的目标函数执行尺寸和形状设计,以满足性能标准,例如应力,屈曲约束等。这两个设计阶段是根据几何非线性公式执行的。该非线性公式是使用有限元梁和Newton-Raphson方法实现的,并分别使用顺序线性规划和顺序二次规划方法求解。拓扑设计过程能够处理二维问题和三维问题,这使我们能够设计更复杂的机制。此外,对设计变量对目标函数的影响进行了参数研究,并研究了定标规律。

著录项

  • 作者

    Joo, Jin-Yong.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号