首页> 外文学位 >Mathematical models that predict muscle isometric forces and fatigue.
【24h】

Mathematical models that predict muscle isometric forces and fatigue.

机译:预测肌肉等轴测力和疲劳的数学模型。

获取原文
获取原文并翻译 | 示例

摘要

Electrical stimulation can be used to assist paralyzed individuals to perform functional movements. This application is called functional electrical stimulation (FES). However, muscle fatigue is a major limitation in the practical use of FES. Mathematical models that can accurately predict muscle forces and fatigue produced in response to electrical stimulations will allow us to design stimulation patterns that maximize force and minimize fatigue. The goal of this dissertation is to develop and test mathematical models that can predict changes in isometric forces during repetitive activation of human skeletal muscle with brief bursts of stimulation pulses. Results in Chapter 2 showed that our force model, parameterized with force responses to only two brief stimulation trains, was able to predict forces to trains with a wide range of stimulation frequencies and pulse patterns (the distribution of pulses within the stimulation train). In addition, the force model successfully identified the patterns that produced the greatest force-time integral (area under the force-time curve) for each individual (N = 12) under non-fatigue and fatigue conditions. The approach used to model fatigue was to monitor the changes in the force-model parameter values during fatigue. The fatigue model, parameterized with one fatigue protocol, accurately predicted the effects of stimulation frequency, pulse pattern, and resting time (time separating stimulation trains) on muscle fatigue. The success with the force- and fatigue-model systems demonstrated their potential for identifying the optimal pattern that maximize force and minimize fatigue during clinical application of FES.
机译:电刺激可用于帮助瘫痪的个体进行功能性运动。此应用称为功能性电刺激(FES)。然而,肌肉疲劳是FES实际使用中的主要限制。可以准确预测响应电刺激而产生的肌肉力量和疲劳的数学模型将使我们能够设计出最大程度地增加力量并最小化疲劳的刺激模式。本文的目的是开发和测试数学模型,该模型可以预测在短暂刺激脉冲的反复激活人体骨骼肌过程中等距力的变化。第2章中的结果表明,仅通过对两个简短刺激序列的力响应进行参数化的力模型,就能够预测具有各种刺激频率和脉冲模式(刺激序列内脉冲的分布)的列车的力。此外,力模型成功地确定了在非疲劳和疲劳条件下为每个个体(N = 12)产生最大力-时间积分(力-时间曲线下的面积)的模式。用于疲劳建模的方法是监视疲劳过程中力模型参数值的变化。通过一种疲劳协议进行参数化的疲劳模型可以准确预测刺激频率,脉冲模式和静息时间(分开刺激序列的时间)对肌肉疲劳的影响。力模型和疲劳模型系统的成功展示了它们在确定FES临床应用过程中最大化力和最小化疲劳的最佳模式方面的潜力。

著录项

  • 作者

    Ding, Jun.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Biomedical.; Health Sciences Rehabilitation and Therapy.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;康复医学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号