首页> 外文学位 >All-silicon micromachined acoustic ejector arrays for micro propulsion and flow control.
【24h】

All-silicon micromachined acoustic ejector arrays for micro propulsion and flow control.

机译:全硅微机械声喷射器阵列,用于微推进和流量控制。

获取原文
获取原文并翻译 | 示例

摘要

This research reports a high-density all-silicon micromachined acoustic ejector (MACE) array utilizing forced Helmholtz resonators. The devices are coupled with an acoustic ejector for the generation of high-speed micro-jets needed in applications such as micro propulsion, jet cooling, and pumping. The ultimate goal in developing such an acoustic ejector is in generating vertical thrust sufficient for lifting and hovering miniature platforms.; To realize the proposed MACE structure, a novel three-dimensional MEMS fabrication technology is developed. The MACE array, consisting of four Helmholtz resonators surrounding an ejector hole, is formed by bonding two pre-processed micromachined silicon wafers, one supporting a diaphragm and the other a drive electrode. Fabrication is performed using a low-temperature localized wafer bonding with BCB (Benzocyclobutene) in combination with DRIE (deep reactive ion etch) and 3D micromachining. Actuation of the diaphragm is achieved using electrostatic drive utilizing thick perforated electrode under the diaphragm. At acoustic resonance, the device is capable of producing air jets with a velocity of at least a few meters per second.; A reduced-order numerical model for the forced Helmholtz resonator is used as a guideline for the design optimization. Theoretical and finite-element analysis techniques are also used to understand and optimize the device structural behavior. Perforation on the drive electrode has been carefully designed based on theoretical analysis to minimize all damping effects. A high-density (23 units/cm2) all-silicon MACE array has been designed and fabricated with a yield as high as 90%.; Detailed testing and characterization through interferometry, hot-wire anemometry, and flow visualization have been performed to verify the theory and design of the micromachined forced Helmholtz resonator. MACE (∼1.6mm x 1.6mm x 1 mm) with air jet velocity >1 m/sec has been tested using hot-wire anemometry at a distance of 560μm from the resonator throat at an actuation frequency of ∼70kHz. Flow entrainment and visualization have demonstrated a jet column longer than 10cm. The fabricated MACE has demonstrated a thrust of 1.35μN per ejector/resonator. It also has demonstrated a gas pumping rate of ∼54 ml/min per ejector. A MACE chip with 20 ejectors has been tested as an active heat sink and shows a cooling flux of >600W/m2 at a distance of 1 cm from a heated chip (∼100°C). The device has consistently operated for more than 6 billion cycles without failures.; To further improve MACE performance, a planar fabrication technology for constructing out-of-plane curved surfaces in silicon with an arbitrary profile using a single masking and etching step has also been developed. This technology has been designed and used to fabricate an out-of-plane curved drive electrode for MACE actuation. The new design has demonstrated that the jet velocity is increased by a factor of 2 without collapsing the diaphragm. The equivalent thrust output has been increased by 4 times. By incorporating an ejector shroud into MACE, it is believed that the MACE chip could generate sufficient thrust for levitation.
机译:这项研究报告了利用强制亥姆霍兹共振器的高密度全硅微机械声喷射器(MACE)阵列。这些设备与声学喷射器耦合,用于生成微推进,喷射冷却和泵送等应用中所需的高速微喷射。开发这种声发射器的最终目的是产生足以提升和悬停微型平台的垂直推力。为了实现所提出的MACE结构,开发了一种新颖的三维MEMS制造技术。 MACE阵列由围绕喷射器孔的四个亥姆霍兹谐振器组成,是通过将两个预处理的微加工硅晶片粘合在一起而形成的,一个支撑隔膜,另一个支撑驱动电极。使用与BCB(苯并环丁烯)结合的低温局部晶圆结合DRIE(深反应离子刻蚀)和3D微加工进行制造。隔膜的驱动是使用静电驱动来实现的,该驱动利用隔膜下方的厚穿孔电极。在声共振时,该装置能够产生至少每秒几米的速度的喷气。强制亥姆霍兹谐振器的降阶数值模型被用作设计优化的指南。理论和有限元分析技术也用于理解和优化器件的结构行为。根据理论分析精心设计了驱动电极上的穿孔,以最大程度地减少所有阻尼效应。设计并制造了高密度(23单位/ cm 2 )全硅MACE阵列,成品率高达90%。已经通过干涉测量,热线风速测量和流动可视化进行了详细的测试和表征,以验证微机械强迫亥姆霍兹谐振器的理论和设计。 MACE(〜1.6mm x 1.6mm x 1 mm)的空气喷射速度> 1 m / sec已通过热线风速仪在离谐振器喉部560μm的距离处以〜70kHz的激励频率进行了测试。气流夹带和可视化表明,射流柱长于10cm。制成的MACE已证明每个弹出器/谐振器的推力为1.35μN。每个喷射器的抽气速率约为54毫升/分钟。具有20个弹出器的MACE芯片已经过测试,可以用作有源散热器,并且在距加热芯片(〜100°C)1 cm的距离处显示> 600W / m 2 的冷却通量。该设备已连续运行超过60亿次而无故障。为了进一步改善MACE性能,还开发了一种平面制造技术,该技术使用单个掩膜和蚀刻步骤在具有任意轮廓的硅中构造平面外曲面。该技术已被设计并用于制造用于MACE致动的平面外弯曲驱动电极。新设计表明,射流速度增加了2倍,而没有使隔膜破裂。等效推力输出增加了4倍。通过将喷射器护罩结合到MACE中,可以相信MACE芯片可以产生足够的推力以进行悬浮。

著录项

  • 作者

    Chou, Tsung-Kuan Allen.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号