首页> 外文学位 >Nonlinear Analysis and Control of Aeroelastic Systems
【24h】

Nonlinear Analysis and Control of Aeroelastic Systems

机译:气动弹性系统的非线性分析与控制

获取原文
获取原文并翻译 | 示例

摘要

Presence of nonlinearities may lead to limit cycle oscillations (LCOs) in aeroelastic systems. LCOs can result in fatigue in wings leading to catastrophic failures. Existence of LCOs for velocities less than the linear flutter velocity has been observed during flight and wind tunnel tests, making such subcritical behavior highly undesirable. The objective of this dissertation is to investigate the existence of subcritical LCOs in aeroelastic systems and develop state feedback controllers to suppress them. The research results are demonstrated on a two degree of freedom airfoil section model with stiffness nonlinearity.;Three different approaches are developed and discussed. The first approach uses a feedback linearization controller employing the aeroelastic modal coordinates. The use of modal coordinates results in a system which is linearly decoupled making it possible to avoid cancellation of any linear terms when compared to existing feedback linearization controllers which use the physical coordinates. The state and control costs of the developed controller are compared to the costs of the traditional feedback linearization controllers. Second approach involves the use of nonlinear normal modes (NNMs) as a tool to predict LCO amplitudes of the aeroelastic system. NNM dynamics along with harmonic balance method are used to generate analytical estimates of LCO amplitude and its sensitivities with respect to the introduced control parameters. A multiobjective optimization problem is solved to generate optimal control parameters which minimize the LCO amplitude and the control cost. The third approach uses a nonlinear state feedback control input obtained as the solution of a multiobjective optimization problem which minimizes the difference between the LCO commencement velocity and the linear flutter velocity. The estimates of LCO commencement velocity and its sensitivities are obtained using numerical continuation methods and harmonic balance methods. It is shown that the developed optimal controller eliminates any existing subcritical LCOs by converting them to supercritical LCOs.
机译:非线性的存在可能导致气动弹性系统中的极限循环振荡(LCO)。 LCO可能导致机翼疲劳,导致灾难性故障。在飞行和风洞测试期间,已经观察到存在速度小于线性颤动速度的LCO,这使得这种亚临界行为非常不可取。本文的目的是研究气弹系统中亚临界LCO的存在并开发状态反馈控制器来抑制它们。在具有刚度非线性的两自由度翼型截面模型上证明了研究结果。第一种方法使用采用气动弹性模态坐标的反馈线性化控制器。与使用物理坐标的现有反馈线性化控制器相比,模态坐标的使用导致系统线性解耦,从而有可能避免任何线性项的抵消。将开发的控制器的状态和控制成本与传统的反馈线性化控制器的成本进行比较。第二种方法涉及使用非线性法线模(NNM)作为预测气动弹性系统LCO振幅的工具。 NNM动力学与谐波平衡方法一起用于生成LCO振幅及其相对于引入的控制参数的灵敏度的分析估计。解决了多目标优化问题,以生成使LCO幅度和控制成本最小的最佳控制参数。第三种方法使用获得的非线性状态反馈控制输入作为多目标优化问题的解决方案,该问题使LCO启动速度和线性颤动速度之间的差异最小。 LCO起始速度及其灵敏度的估计值是使用数值连续方法和谐波平衡方法获得的。结果表明,开发的最优控制器通过将它们转换为超临界LCO消除了任何现有的亚临界LCO。

著录项

  • 作者

    Shukla, Himanshu.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号