首页> 外文学位 >Digital Intensive Mixed Signal Circuits with In-situ Performance Monitors
【24h】

Digital Intensive Mixed Signal Circuits with In-situ Performance Monitors

机译:带现场性能监控器的数字密集混合信号电路

获取原文
获取原文并翻译 | 示例

摘要

Digital intensive circuit design techniques of different mixed-signal systems such as data converters, clock generators, voltage regulators etc. are gaining attention for the implementation of modern microprocessors and system-on-chips (SoCs) in order to fully utilize the benefits of CMOS technology scaling. Moreover different performance improvement schemes, for example, noise reduction, spur cancellation, linearity improvement etc. can be easily performed in digital domain.;In addition to that, increasing speed and complexity of modern SoCs necessitate the requirement of in-situ measurement schemes, primarily for high volume testing. In-situ measurements not only obviate the need for expensive measurement equipments and probing techniques, but also reduce the test time significantly when a large number of chips are required to be tested.;Several digital intensive circuit design techniques are proposed in this dissertation along with different in-situ performance monitors for a variety of mixed signal systems. First, a novel beat frequency quantization technique is proposed in a two-step VCO quantizer based ADC implementation for direct digital conversion of low amplitude bio- potential signals. By direct conversion, it alleviates the requirement of the area and power consuming analog-frontend (AFE) used in a conventional ADC designs. This prototype design is realized in a 65nm CMOS technology. Measured SNDR is 44.5dB from a 10mVpp, 300Hz signal and power consumption is only 38muW.;Next, three different clock generation circuits, a phase-locked loop (PLL), a multiplying delay-locked loop (MDLL) and a frequency-locked loop (FLL) are presented. First a 0.4-to-1.6GHz sub-sampling fractional-N all digital PLL architecture is discussed that utilizes a D-flip-flop as a digital sub-sampler. Measurement results from a 65nm CMOS test-chip shows 5dB lower phase noise at 100KHz offset frequency, compared to a conventional architecture. The Digital PLL (DPLL) architecture is further extended for a digital MDLL implementation in order to suppress the VCO phase noise beyond the DPLL bandwidth. A zero-offset aperture phase detector (APD) and a digital- to-time converter (DTC) are employed for static phase-offset (SPO) cancellation. A unique in-situ detection circuitry achieves a high resolution SPO measurement in time domain. A 65nm test-chip shows 0.2-to-1.45GHz output frequency range while reducing the phase-noise by 9dB compared to a DPLL. Next, a frequency-to-current converter (FTC) based fractional FLL is proposed for a low accuracy clock generation in an extremely low area for IoT application. High density deep-trench capacitors are used for area reduction. The test-chip is fabricated in a 32nm SOI technology that takes only 0.0054mm2 active area. A high-resolution in-situ period jitter measurement block is also incorporated in this design.;Finally, a time based digital low dropout (DLDO) regulator architecture is proposed for fine grain power delivery over a wide load current dynamic range and input/output voltage in order to facilitate dynamic voltage and frequency scaling (DVFS). High- resolution beat frequency detector dynamically adjusts the loop sampling frequency for ripple and settling time reduction due to load transients. A fixed steady-state voltage offset provides inherent active voltage positioning (AVP) for ripple reduction. Circuit simulations in a 65nm technology show more than 90% current efficiency for 100X load current variation, while it can operate for an input voltage range of 0.6V -- 1.2V.
机译:为了充分利用CMOS的优势,不同混合信号系统(例如数据转换器,时钟发生器,电压调节器等)的数字密集电路设计技术正在关注实现现代微处理器和片上系统(SoC)的目的。技术扩展。此外,可以在数字领域轻松执行不同的性能改进方案,例如降噪,消除杂散,改善线性度等;此外,现代SoC的速度和复杂性的提高也要求对原位测量方案的要求,主要用于大容量测试。现场测量不仅省去了昂贵的测量设备和探测技术,而且在需要测试大量芯片的情况下也大大减少了测试时间。论文提出了几种数字密集电路设计技术用于各种混合信号系统的不同现场性能监视器。首先,在基于两步VCO量化器的ADC实现中提出了一种新颖的拍频量化技术,用于低幅度生物电势信号的直接数字转换。通过直接转换,它减轻了传统ADC设计中使用的面积和功耗模拟前端(AFE)的要求。该原型设计采用65nm CMOS技术实现。从10mVpp,300Hz信号测得的SNDR为44.5dB,功耗仅为38muW;接着,三个不同的时钟生成电路,锁相环(PLL),乘法延迟锁相环(MDLL)和锁频循环(FLL)。首先,讨论了使用D触发器作为数字子采样器的0.4至1.6GHz子采样小数N个全数字PLL体系结构。与传统架构相比,在65nm CMOS测试芯片上的测量结果表明,在100KHz偏移频率下,相位噪声降低了5dB。为了抑制VCO相位噪声超过DPLL带宽,数字PLL(DPLL)体系结构进一步扩展为数字MDLL实现。零偏移孔径相位检测器(APD)和数模转换器(DTC)用于静态相位偏移(SPO)消除。独特的原位检测电路可在时域内实现高分辨率SPO测量。与DPLL相比,一块65nm的测试芯片显示了0.2至1.45GHz的输出频率范围,同时将相位噪声降低了9dB。接下来,提出了一种基于频率-电流转换器(FTC)的分数FLL,用于在物联网应用的极小区域内生成低精度时钟。高密度深沟电容器用于减小面积。该测试芯片采用32nm SOI技术制造,仅占用0.0054mm2的有效面积。该设计中还集成了高分辨率的原位周期抖动测量模块。最后,提出了一种基于时间的数字低压降(DLDO)调节器架构,可在较宽的负载电流动态范围和输入/输出范围内提供精细的功率输出电压以便于动态电压和频率缩放(DVFS)。高分辨率差拍频率检测器可动态调整环路采样频率,以减少由于负载瞬变而引起的纹波和稳定时间。固定的稳态电压偏移可提供固有的有源电压定位(AVP),以减少纹波。 65nm技术中的电路仿真显示,对于100倍负载电流变化,电流效率超过90%,而它可以在0.6V至1.2V的输入电压范围内工作。

著录项

  • 作者

    Kundu, Somnath.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号