首页> 外文学位 >Modeling hydrogen diffusion for solar cell passivation and process optimization.
【24h】

Modeling hydrogen diffusion for solar cell passivation and process optimization.

机译:为太阳能电池钝化和工艺优化建模氢扩散。

获取原文
获取原文并翻译 | 示例

摘要

A diffusion model for hydrogen (H) in crystalline silicon was established which takes into account the charged state conversion, junction field, mobile traps, and complex formation and dissociation at dopant and trap sites. Carrier exchange among the various charged species is a "fast" process compared to the diffusion process. A numerical method was developed to solve the densities of various charged species from the Poisson's equation that involves shallow-level dopants and one "negative U" impurity, e.g., H. Time domain implicit method was adopted in finite difference scheme to solve the fully coupled equations.;Limiting versions of the model were applied to the problems that are of interest to photovoltaics. Simplified trap-limited model was used to describe the low temperature diffusion profiles, assuming process-induced traps, a constant bulk trap level, and trapping/detrapping mechanisms. The results of the simulation agreed with those obtained from experiments. The best fit yielded a low surface free H concentration, Cs, (∼10 14 cm-3) from high temperature extrapolated diffusivity value. In the case of ion beam hydrogenation, mobile traps needed to be considered. PAS analysis showed the existence of vacancy-type defects in implanted Si substrates. Simulation of hydrogen diffusion in p-n junction was first attempted in this work. The order of magnitude of Cs (∼10 14 cm-3) was confirmed. Simulation results showed that the preferred charged state of H is H- (H +) in n- (p-) side of the junction. The accumulation of H- (H+) species on n+ (p+) side of the n+-p (p+-n) junction was observed, which could retard the diffusion in junction. The diffusion of hydrogen through heavily doped region in a junction is trap-limited. Several popular hydrogenation techniques were evaluated by means of modeling and experimental observations. In particular, PECVD followed by RTP hydrogenation was found to be two-step process: PECVD deposition serves as a predeposition step of H and during RTP anneal step, H is released from the surface traps and redistributed into the bulk.
机译:建立了晶体硅中氢(H)的扩散模型,该模型考虑了带电状态转换,结场,可移动陷阱以及在掺杂物和陷阱处的复合物形成和离解。与扩散过程相比,各种带电物种之间的载流子交换是一个“快速”过程。提出了一种数值方法,从涉及浅层掺杂物和一种“负U”杂质(例如H)的泊松方程中求解各种带电物质的密度。有限差分方案采用时域隐式方法来求解完全耦合方程的极限版本被应用于光伏感兴趣的问题。使用简化的捕集阱受限模型来描述低温扩散曲线,假设过程诱导的捕集阱,恒定的总体捕集阱水平以及捕集/解吸机制。模拟结果与从实验中获得的结果一致。最佳拟合从高温外推扩散率值得出低的表面自由H浓度Cs(〜10 14 cm-3)。在离子束氢化的情况下,需要考虑移动阱。 PAS分析表明在注入的Si衬底中存在空位型缺陷。在这项工作中首次尝试模拟氢在p-n结中的扩散。确认了Cs的数量级(约10 14 cm-3)。仿真结果表明,在结的n-(p-)侧,H的首选充电状态为H-(H +)。观察到H-(H +)物种在n + -p(p + -n)结的n +(p +)侧积累,这可能会延迟结中的扩散。氢通过结中的重掺杂区的扩散受到陷阱限制。通过建模和实验观察评估了几种流行的氢化技术。特别地,发现PECVD和随后的RTP氢化是两步过程:PECVD沉积是H的预沉积步骤,在RTP退火步骤中,H从表面阱中释放出来并重新分布到主体中。

著录项

  • 作者

    Zhang, Yi.;

  • 作者单位

    New Jersey Institute of Technology.;

  • 授予单位 New Jersey Institute of Technology.;
  • 学科 Physics Condensed Matter.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号