首页> 外文学位 >Quantum dot microdisk lasers.
【24h】

Quantum dot microdisk lasers.

机译:量子点微盘激光器。

获取原文
获取原文并翻译 | 示例

摘要

Quantum dots (QDs) in semiconductor microcavities are an invaluable tool for investigating cavity quantum electrodynamics, and also may lead to novel optical and opto-electronic devices. It has been successfully demonstrated that these QD microcavities have a great potential of playing a key role in realizing quantum cryptography and quantum computing. In this thesis, another potential application of QD for ultra-low threshold lasers has been investigated by fabricating QDs in microdisk cavity structures—both optically and electrically.; Record high quality-factor (Q ∼ 18,000) whispering gallery mode (WGM) QD microdisk cavities are fabricated using wet chemical etching. Defect-free self-assembled InGaAs quantum dots are formed spontaneously by molecular beam epitaxy on a GaAs surface via Stranski-Krastanov growth transition. Two layers of InGaAs QDs are chosen as gain material embedded within the microdisk. Optically pumped continuous-wave lasing from QDs in 1.5∼8 μm microdisk laser structures are reported. The microdisk emission spectra show lasing in 1∼5 well separated modes in the wavelength range between 900 and 990 nm. The estimated threshold pump densities are between 20 and 200 W/cm2.; QD microdisk injection lasers are further realized by introducing a double-disk structure that separates the active disk layer from the metal contact, and by implementing a new metal air-bridge contact to the top-contact disk. Single mode continuous-wave lasing around 920∼936 nm from QDs in ∼4 μm diameter microdisks is presented. The threshold current of this device was as low as 40∼69 μA. The estimated spontaneous emission factor is >0.05. At high injection level, the low threshold mode saturated and another shorter wavelength mode started lasing. We observed the blue-shift of QDs electroluminescence due to QD bandfilling effect and red-shift of the lasing modes due to thermal heating.
机译:半导体微腔中的量子点(QD)是研究腔量子电动力学的无价工具,也可能导致新型光学和光电设备。已经成功地证明,这些QD微腔具有巨大的潜力,在实现量子密码术和量子计算中起着关键作用。在本文中,通过在光学和电学上在微盘腔结构中制造QD,研究了QD在超低阈值激光器中的另一潜在应用。使用湿式化学蚀刻工艺制造了创纪录的高质量因子( Q 〜18,000)耳语画廊模式(WGM)QD微盘腔。无缺陷的自组装InGaAs量子点是通过Stranski-Krastanov生长过渡在GaAs表面上通过分子束外延自发形成的。选择两层InGaAs QD作为嵌入微盘的增益材料。据报道,在1.5〜8μm的微盘激光结构中,量子点产生了光泵浦连续波激光。微盘发射光谱显示波长在900到990 nm之间以1〜5个良好分离的模式发射激光。估计的阈值泵浦密度在20至200 W / cm 2 之间。 QD微型磁盘注入激光器可通过引入双磁盘结构来实现,该结构将有源磁盘层与金属触点分开,并通过对顶触点磁盘实施新的金属气桥触点来实现。提出了在约4μm直径的微盘中从QD发出的约920〜936 nm的单模连续波激光。该器件的阈值电流低至40〜69μA。估计的自发排放因子> 0.05。在高注入水平下,低阈值模式饱和,另一个较短波长的模式开始发射激光。我们观察到由于QD的填充效应而引起的QDs电致发光的蓝移,以及由于热引起的激射模式的红移。

著录项

  • 作者

    Zhang, Lidong.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号