首页> 外文学位 >Investigation of selective doping method for producing stabilized grain structures in metals.
【24h】

Investigation of selective doping method for producing stabilized grain structures in metals.

机译:用于在金属中产生稳定晶粒结构的选择性掺杂方法的研究。

获取原文
获取原文并翻译 | 示例

摘要

Mechanical performance of a polycrystalline metal at high homologous temperature depends in part on grain structure. Grain boundary sliding is a localized plastic deformation and a mechanism for creep and rupture. Failure can occur when grains slide along boundaries transverse to the axis of an applied load. Stabilization of a structure consisting of overlapping grains of high aspect ratio is one approach to inhibiting grain boundary sliding. An overlapping grain structure is expected to offer superior resistance to creep and rupture compared with an equiaxed structure, because weak transverse grain boundaries are bridged by grains in adjacent layers. Selective doping is a method for realizing stabilized overlapping grain structures and consists of inserting discrete arrays of insoluble dopant into a matrix at regular intervals. At elevated temperature, the dopant forms arrays of bubbles of sub-micrometer size. The bubble arrays aid in the formation and stabilization of an overlapping grain structure at high temperature. Two methods of selective doping were investigated. The first approach consisted of doping the near-surface regions of molybdenum foil substrates with potassium by ion implantation and depositing molybdenum onto the doped substrates by physical vapor deposition to form three-layer specimens. The second approach consisted of doping the near-surface regions of tungsten foils with potassium by ion implantation and subsequently diffusion bonding the doped foils to form multi-layer specimens. Doped, multi-layer specimens were annealed for recrystallization and grain growth. The size and spatial distributions of the potassium bubble arrays were documented by observing bubbles on intergranular fracture surfaces using scanning electron microscopy. Results showed that both approaches are viable for producing stabilized grain structures. Selective doping produced a dispersion of potassium bubbles with radii of tens of nanometers. The bubble arrays established overlapping grain structures that remained stable at high homologous temperature. In contrast, undoped and annealed multi-layer specimens developed a bamboo-type grain structure. Bubble coarsening rates appeared consistent with those produced by bubble coalescence due to migration of bubbles caused by diffusion of matrix atoms along the bubble surface.
机译:在高同源温度下多晶金属的机械性能部分取决于晶粒结构。晶界滑动是局部塑性变形,是蠕变和断裂的机制。当晶粒沿着垂直于所施加载荷轴的边界滑动时,会发生破坏。由高纵横比的重叠晶粒组成的结构的稳定化是抑制晶界滑动的一种方法。与等轴结构相比,重叠的晶粒结构有望提供优异的抗蠕变和断裂性能,因为弱的横向晶粒边界被相邻层中的晶粒桥接。选择性掺杂是一种用于实现稳定的重叠晶粒结构的方法,包括将不溶性掺杂剂的离散阵列以规则的间隔插入到矩阵中。在升高的温度下,掺杂剂形成亚微米大小的气泡阵列。气泡阵列有助于在高温下形成和稳定重叠的晶粒结构。研究了两种选择性掺杂方法。第一种方法包括通过离子注入用钾掺杂钼箔衬底的近表面区域,以及通过物理气相沉积将钼沉积到掺杂的衬底上以形成三层试样。第二种方法包括通过离子注入用钾掺杂钨箔的近表面区域,然后将掺杂的箔扩散结合以形成多层样品。将掺杂的多层样品退火以进行重结晶和晶粒生长。钾气泡阵列的大小和空间分布是通过使用扫描电子显微镜观察晶间断裂表面上的气泡来记录的。结果表明,两种方法都可用于生产稳定的晶粒结构。选择性掺杂产生了半径为数十纳米的钾气泡分散体。气泡阵列建立了重叠的晶粒结构,这些晶粒结构在高同源温度下保持稳定。相反,未经掺杂和退火的多层试样形成了竹型晶粒结构。由于基质原子沿气泡表面扩散而引起的气泡迁移,气泡的粗化速率与气泡聚结产生的速率一致。

著录项

  • 作者

    Szozdowski, Paul T.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 258 p.
  • 总页数 258
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号