首页> 外文学位 >Application of hybrid methodology to rotors in steady and maneuvering flight.
【24h】

Application of hybrid methodology to rotors in steady and maneuvering flight.

机译:混合方法在稳定和机动飞行中对旋翼的应用。

获取原文
获取原文并翻译 | 示例

摘要

Helicopters are versatile flying machines that have capabilities that are unparalleled by fixed wing aircraft, such as operating in hover, performing vertical takeoff and landing on unprepared sites. This makes their use especially desirable in military and search-and-rescue operations. However, modern helicopters still suffer from high levels of noise and vibration caused by the physical phenomena occurring in the vicinity of the rotor blades. Therefore, improvement in rotorcraft design to reduce the noise and vibration levels requires understanding of the underlying physical phenomena, and accurate prediction capabilities of the resulting rotorcraft aeromechanics. The goal of this research is to study the aeromechanics of rotors in steady and maneuvering flight using hybrid Computational Fluid Dynamics (CFD) methodology. The hybrid CFD methodology uses the Navier-Stokes equations to solve the flow near the blade surface but the effect of the far wake is computed through the wake model. The hybrid CFD methodology is computationally efficient and its wake modeling approach is nondissipative making it an attractive tool to study rotorcraft aeromechanics.;Several enhancements were made to the CFD methodology and it was coupled to a Computational Structural Dynamics (CSD) methodology to perform a trimmed aeroelastic analysis of a rotor in forward flight. The coupling analyses, both loose and tight were used to identify the key physical phenomena that affect rotors in different steady flight regimes. The modeling enhancements improved the airloads predictions for a variety of flight conditions. It was found that the tightly coupled method did not impact the loads significantly for steady flight conditions compared to the loosely coupled method.;The coupling methodology was extended to maneuvering flight analysis by enhancing the computational and structural models to handle non-periodic flight conditions and vehicle motions in time accurate mode. The flight test control angles were employed to enable the maneuvering flight analysis. The fully coupled model provided the presence of three dynamic stall cycles on the rotor in maneuver.;It is important to mention that analysis of maneuvering flight requires knowledge of the pilot input control pitch settings, and the vehicle states. As the result, these computational tools cannot be used for analysis of loads in a maneuver that has not been duplicated in a real flight. This is a significant limitation if these tools are to be selected during the design phase of a helicopter where its handling qualities are evaluated in different trajectories. Therefore, a methodology was developed to couple the CFD/CSD simulation with an inverse flight mechanics simulation to perform the maneuver analysis without using the flight test control input. The methodology showed reasonable convergence in steady flight regime and control angles predictions compared fairly well with test data. In the maneuvering flight regions, the convergence was slower due to relaxation techniques used for the numerical stability. The subsequent computed control angles for the maneuvering flight regions compared well with test data. Further, the enhancement of the rotor inflow computations in the inverse simulation through implementation of a Lagrangian wake model improved the convergence of the coupling methodology.
机译:直升机是多功能飞行器,具有固定翼飞机无法比拟的功能,例如在悬停中操作,在未准备好的地点执行垂直起飞和降落。这使得它们特别适用于军事和搜索救援行动。然而,现代直升机仍然遭受由转子叶片附近发生的物理现象引起的高水平的噪声和振动。因此,对旋翼飞机的设计进行改进以降低噪声和振动水平,需要了解潜在的物理现象,并需要对所得旋翼飞机的空气力学的准确预测能力。这项研究的目的是使用混合计算流体动力学(CFD)方法研究稳定和机动飞行中的转子的空气力学。混合CFD方法使用Navier-Stokes方程来求解叶片表面附近的流动,但通过尾流模型计算了远尾流的影响。混合CFD方法学计算效率高,其尾流建模方法无耗散,使其成为研究旋翼航空器力学的有吸引力的工具。;对CFD方法学进行了一些增强,并与计算结构动力学(CSD)方法相结合以进行修整向前飞行中转子的气动弹性分析。松散和紧密的耦合分析被用来识别在不同的稳定飞行状态下影响旋翼的关键物理现象。建模方面的改进改进了各种飞行条件下的空载预测。结果发现,与松散耦合方法相比,紧密耦合方法对稳定飞行条件不会显着影响载荷。耦合方法通过增强处理非周期性飞行条件的计算和结构模型而扩展到机动飞行分析。时间精确模式下的车辆运动。使用飞行测试控制角度来进行机动飞行分析。完全耦合模型提供了在机动飞行中转子上的三个动态失速周期的信息。重要的是要提到对机动飞行的分析需要了解飞行员输入控制桨距设置和车辆状态。结果,这些计算工具不能用于在实际飞行中没有重复的机动中分析载荷。如果要在直升机的设计阶段(在不同的轨迹上评估其操作质量)期间选择这些工具,这将是一个重大限制。因此,开发了一种方法,以将CFD / CSD模拟与逆飞行力学模拟耦合在一起,从而在不使用飞行测试控制输入的情况下执行机动分析。该方法显示出在稳定飞行状态下合理的收敛性,并且控制角的预测与测试数据相比相当好。在机动飞行区域,由于用于数值稳定性的松弛技术,收敛较慢。随后为机动飞行区域计算的控制角与测试数据进行了很好的比较。此外,通过实施拉格朗日尾流模型提高了逆向仿真中的转子流入计算能力,从而改善了耦合方法的收敛性。

著录项

  • 作者

    Rajmohan, Nischint.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号