首页> 外文学位 >Electronic structure studies of molybdenum -thiolate complexes related to pyranopterin molybdenum enzymes.
【24h】

Electronic structure studies of molybdenum -thiolate complexes related to pyranopterin molybdenum enzymes.

机译:与吡喃蝶呤钼酶有关的硫醇钼配合物的电子结构研究。

获取原文
获取原文并翻译 | 示例

摘要

All forms of life from microorganisms to humans, aerobes and anaerobes, utilize pyranopterin molybdenum enzymes to catalyze reactions of organic and inorganic substrates. The diverse reactions catalyzed by these enzymes are an integral part of the global cycles of sulfur, nitrogen, and carbon. Different combinations of cysteine thiolate, ene-1,2-dithiolate, and terminal sulfido donor ligands are coordinated to molybdenum in the active sites of the three distinct families of pyranopterin molybdenum enzymes. Thus, understanding the bonding of these sulfur donor ligands to high-valent molybdenum centers is a prerequisite for obtaining fundamental insight into their respective roles in enzymatic catalysis. The electronic structures of mono-oxo molybdenum-thiolate and -dithiolate complexes ([MoO(phenylthiolate)4]- , [(L-N2S2)MoO(SR)], [MoO(ene-1,2-dithiolate)2]-) and des-oxo molybdenum-bisdithiolate ([Mo(O/S/Se-adamantyl)(dimethylethene-1,2-dithiolate)2] -) complexes have been investigated using a combination of electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies. The results have been used to evaluate DFT calculations that explore the electronic structure of the enzyme active site with respect to amino acid binding, geometric perturbations of the dithiolate ligand, and reaction mechanism.;Three primary conclusions have been made that are relevant to the electronic structures of the active sites of pyranopterin molybdenum enzymes: (1) extremely versatile mono-oxo molybdenum-thiolate orbital interactions are a direct function of the O-Mo-S-C dihedral angle, and a strong pi-type bonding interaction occurs when this angle is near 90°, (2) mono-oxo molybdenum-bisdithiolate bonding results in a unique pseudo-sigma bonding scheme whereby electron density is localized between the two sulfur atoms of the dithiolate, providing an efficient way to couple the metal redox orbital into electron transfer pathways, (3) the bisdithiolate ligation dominates the electronic structure of des-oxo molybdenum-bisdithiolate complexes and may be a stabilizing factor that reduces the reorganization energy needed by the enzyme during catalysis.
机译:从微生物到人类,需氧菌和厌氧菌,所有形式的生命都利用吡喃蝶呤钼酶催化有机和无机底物的反应。这些酶催化的各种反应是硫,氮和碳的整体循环的组成部分。在吡喃蝶呤钼酶的三个不同家族的活性位点,巯基半胱氨酸硫醇盐,烯-1,2-二硫醇盐和末端硫化物供体配体的不同组合与钼配位。因此,了解这些硫供体配体与高价钼中心的键合是获得对其在酶催化中各自作用的基础认识的前提。单氧羰基硫醇钼和-二硫醇盐配合物([MoO(phenylthiolate)4]-,[(L-N2S2)MoO(SR)],[MoO(ene-1,2-dithiolate)2]-的电子结构)和去氧羰基双二硫代钼酸酯([Mo(O / S / Se-金刚烷基)(二甲基乙烯-1,2-二硫代酸酯)2]-)配合物已通过电子吸收,磁性圆二色性和共振的组合进行了研究拉曼光谱学。该结果已用于评估DFT计算,该计算探讨了酶活性位点在氨基酸结合,二硫醇盐配体的几何扰动和反应机理方面的电子结构。;得出了三个与电子有关的主要结论。吡喃蝶呤钼酶的活性位点的结构:(1)O-Mo-SC二面角的直接作用是极为通用的单-氧钼-硫醇钼轨道相互作用,当该角为0时会发生强烈的pi型键相互作用。接近90°时,(2)单氧代钼-双二硫代酸酯键可产生独特的拟西格玛键合方案,其中电子密度位于二硫代酸酯的两个硫原子之间,提供了将金属氧化还原轨道耦合至电子转移的有效方法途径,(3)双二硫醇盐的连接支配着去氧钼-双二硫醇盐复合物的电子结构,并且可能是稳定因子tha t降低了催化过程中酶所需的重组能量。

著录项

  • 作者

    McNaughton, Rebecca Lynn.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Inorganic chemistry.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号