首页> 外文学位 >Design of aromatic thermosetting copolyester compositions and blends for thin film applications.
【24h】

Design of aromatic thermosetting copolyester compositions and blends for thin film applications.

机译:用于薄膜应用的芳族热固性共聚酯组合物和共混物的设计。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is devoted to the development, synthesis, properties, and applications of aromatic thermosetting copolyester (ATSP) and multicomponent systems of ATSP and polyimide thin films. Originally, ATSP was developed as a high performance structural polymer. One drawback to this system is the inability to prepare uniform thin films from NMP solutions of ATSP oligomers. To be used in thin film applications, the synthesis and curing of ATSP oligomers are optimized, permitting formation of uniform thin films. The optimized ATSP thin films display sharp improvements in their dielectric properties. Two thin film applications have been investigated. One, because foaming can reduce the dielectric constant, the possibility of foaming ATSP using the reaction byproduct during curing is an attractive concept in developing ATSP as a low k dielectric. To this end, the nature of pore formation was investigated and avenues of research for producing foamed ATSP with controlled pore morphology are suggested. Second, the application of ATSP as a sub-micrometer adhesive in solid-state integration of microelectronic devices is explored. In this study we characterize the adhesion mechanism between ATSP and polyimide using DSIMS and demonstrate the effectiveness of this solid state integration technique in a mesoscopic device. In addition, two approaches have been taken to design multi-component systems of ATSP and polyimide thin films with the aim of obtaining optimized properties from the combination of both polymers. In the first approach, thin film blends of ATSP and polyimide have been prepared. Emphasis is placed on the study of the phase separation and surface segregation behavior using a combination of techniques including DSIMS, 3He NRA and AFM. A remarkable yet stable five-layered lamellar structure has been observed in a thin film blend of ATSP and polyimide, representing the first observation of surface directed spinodal decomposition in a thin film blend of high performance polymers. To our knowledge, all other studies on this phenomenon have been limited to model polymers. In the second approach, a hyperbranched copoly(imide-ester) (HBPIE) has been synthesized and characterized. Most interestingly, the HBPIE has a surface area of 83 m2/g, due to their intrinsic and stable microporosity (pore size 12.7 Å). Further, HBPIE thin films displays an intermediate dielectric constant (3.6) and high dielectric breakdown strength (330 V/μm). HBPIE thin films could find potential application as reverse osmosis membranes or dielectric thin films in capacitors.
机译:本论文致力于芳香族热固性共聚酯(ATSP)以及ATSP和聚酰亚胺薄膜的多组分体系的开发,合成,性能和应用。最初,ATSP被开发为高性能结构聚合物。该系统的一个缺点是不能从ATSP低聚物的NMP溶液制备均匀的薄膜。为了用于薄膜应用,ATSP低聚物的合成和固化得到了优化,从而可以形成均匀的薄膜。经过优化的ATSP薄膜在介电性能方面显示出极大的提高。已经研究了两种薄膜应用。一个,因为发泡会降低介电常数,所以在开发ATSP作为低k电介质时,在固化过程中使用反应副产物发泡ATSP的可能性是一个有吸引力的概念。为此,研究了孔形成的性质,并提出了研究生产具有受控孔形态的发泡ATSP的方法。其次,探讨了ATSP作为亚微米粘合剂在微电子器件的固态集成中的应用。在这项研究中,我们使用DSIMS表征了ATSP与聚酰亚胺之间的粘附机理,并证明了这种固态集成技术在介观器件中的有效性。另外,已经采取了两种方法来设计ATSP和聚酰亚胺薄膜的多组分系统,目的是从两种聚合物的组合中获得优化的性能。在第一种方法中,已经制备了ATSP和聚酰亚胺的薄膜共混物。重点放在结合使用DSIMS, 3 He NRA和AFM的技术研究相分离和表面偏析行为上。在ATSP和聚酰亚胺的薄膜共混物中观察到了显着而稳定的五层层状结构,这是在高性能聚合物薄膜共混物中表面定向的旋节线分解的首次观察。据我们所知,关于此现象的所有其他研究都仅限于模型聚合物。在第二种方法中,已经合成并表征了超支化共聚(酰亚胺酯)(HBPIE)。最有趣的是,由于HBPIE具有固有和稳定的微孔性(孔径12.7Å),其表面积为83 m 2 / g。此外,HBPIE薄膜显示出中等介电常数(3.6)和高介电击穿强度(330 V /μm)。 HBPIE薄膜可作为反渗透膜或电容器中的介电薄膜找到潜在的应用。

著录项

  • 作者

    Xu, Kun.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.; Chemistry Polymer.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;高分子化学(高聚物);机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号