首页> 外文学位 >The effect of high density electric pulses on sintered aluminum 201AB silicon carbide MMC PM compacts during plastic deformation.
【24h】

The effect of high density electric pulses on sintered aluminum 201AB silicon carbide MMC PM compacts during plastic deformation.

机译:高密度电脉冲对烧结铝201AB碳化硅MMC PM塑性变形过程中的压实。

获取原文
获取原文并翻译 | 示例

摘要

The effect of high-density electrical pulses on mechanical and structural properties of sintered aluminum SiC metal-matrix composites, fabricated by standard powder-metallurgy compaction and sintering, was investigated. Three types of phenomena where investigated during transverse rupture testing of the samples: a consolidation effect (increasing of the transverse rupture strength (TRS)), an electroplastic effect (decreasing of the flow stresses), and an increasing of the stress intensity factor by electric pulse application.; It was observed, that an increase in the TRS strength of sintered powder metallurgy (PM) aluminum and aluminum metal matrix composite (MMC) compacts is a result of the electric pulse consolidation effect due to non-uniform temperature distribution around the grain boundaries. Three analytical models of the thermal effect of electric pulses on aluminum samples where considered: total temperature change of the sample due to a one electric pulse, one-dimensional steady state model and transient 2D thermal analysis of the temperature distribution around the grain boundary. The 2D transient analysis shows that the temperature rise in the grain boundary of a sintered PM aluminum sample due to an electric pulse can exceed the melting point. At the same time the temperature of the bulk material has an insignificant (28°C) change.; It was found that the electroplastic effect, due to electric pulse application, can account for up to a 40% load drop in aluminum MMC PM compacts. Reduction of flow stresses during plastic deformation could reduce the risk of structural damage, micro-cracks, SiC particle fracture and delamination of the aluminum MMC. These results may find practical application for manufacturing processes such as forging, extrusion, rolling, which involve plastic deformation.; It was experimentally proven that a non-uniform temperature distribution around the crack could re-melt the crack tip and increase the strength of the damaged material. The experimental study shows an increase in the stress intensity factor up to 76% for sintered aluminum PM compacts and up to 116% for sintered aluminum MMC PM compacts due to application of high-density electric pulses during transverse rapture testing.
机译:研究了高密度电脉冲对通过标准粉末冶金压实和烧结制备的烧结铝SiC金属基复合材料的力学和结构性能的影响。在样品的横向断裂测试过程中,研究了三种现象:固结效应(横向断裂强度(TRS)增加),塑性效应(流动应力减小)和电应力强度因子的增加脉冲施加。观察到,烧结粉末冶金(PM)铝和铝金属基复合材料(MMC)压块的TRS强度增加是由于晶界周围温度分布不均匀而产生的电脉冲固结效应的结果。考虑了三种电脉冲对铝样品的热效应的分析模型:一个电脉冲引起的样品总温度变化,一维稳态模型和晶界周围温度分布的瞬态2D热分析。二维瞬态分析表明,由于电脉冲导致的烧结PM铝样品的晶界温度升高可能超过熔点。同时,散装物料的温度变化很小(<28°C)。已发现,由于施加电脉冲而产生的塑性效应可导致铝MMC PM压坯的载荷下降高达40%。减少塑性变形过程中的流应力可以降低结构损坏,微裂纹,SiC颗粒破裂和铝MMC分层的风险。这些结果可以在涉及塑性变形的制造工艺例如锻造,挤压,轧制中找到实际应用。实验证明,裂纹周围的温度分布不均匀会重新熔化裂纹尖端并增加受损材料的强度。实验研究表明,由于在横向断裂试验中施加了高密度电脉冲,烧结铝PM压块的应力强度因子提高了76%,而MMC铝烧结块的应力强度因子提高了116%。

著录项

  • 作者单位

    Marquette University.;

  • 授予单位 Marquette University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号