首页> 外文学位 >Biodiesel production from microalgae, edible and non-edible oils.
【24h】

Biodiesel production from microalgae, edible and non-edible oils.

机译:由微藻油,食用油和非食用油生产生物柴油。

获取原文
获取原文并翻译 | 示例

摘要

The current fossil fuel-based economy is not sustainable because of environmental impacts, economic dependence, and energy security issues. Thus, it is important to find an alternative energy source that is renewable, sustainable, and environmentally benign which pushes the attention in areas such as biomass, hydrogen, fuel cells and solar cells to the forefront. Carbon neutral renewable liquid fuels are needed to replace the petroleum-derived transport fuels. Among all the renewable biofuels sources today, biodiesel from renewable feed-stocks including edible, non-edible oils and microalgae seems more promising as an alternative sustainable fuel as it is biodegradable, non-toxic and environmental friendly.;The direct conversion of algal biomass to biodiesel using the supercritical methanol and the microwave-assisted transesterification techniques were investigated. Wet algal biomass was used as feedstock in the supercritical methanol process and dry algal biomass for the microwave-assisted transesterification. Experimental runs were designed using a response surface methodology and the process parameters such as wet/dry algae to methanol ratio, reaction temperature, reaction time and catalyst concentrations were optimized for both processes. It was observed that both conversion techniques have the potential to provide energy-efficient routes for biodiesel production from algal biomass.;Alkali transesterification process was used to produce biodiesel (alkyl ester) from low free fatty acid (FFA) canola and corn vegetable oils. This process yields about 80-95 % (vol %) for canola and 85-96 % (vol %) for corn using potassium hydroxide (KOH) as a catalyst. The fuel properties of biodiesel produced were compared with ASTM standards for biodiesel and regular petroleum diesel. The conversion of waste cooking oil to methyl esters was carried out using ferric sulfate and sulfuric acid catalysts and the supercritical methanol one-step process. A two-step transesterification process using ferric sulfate and sulfuric acid catalysts was used to remove the high free fatty acid contents in the waste cooking oil (WCO).;The optimization of the transesterification of camelina sativa oil using different heterogeneous metal oxide catalysts, i.e., BaO, SrO, MgO, and CaO, was evaluated. The relative order of the effectiveness of the catalysts was BaO > SrO > CaO > MgO. Transesterification of camelina oil using supercritical methanol with hexane as a cosolvent and subcritical methanol along with potassium hydroxide as a cosolvent/catalyst was investigated to study the methyl ester conversion process. Catalytic conversion of Camelina Sativa oil to biodiesel through both conventional heating and microwave radiation was investigated. Three different types of catalysts: homogeneous catalysts (NaOH and KOH), heterogeneous metal oxide catalysts (BaO and SrO), and sol-gel derived catalysts (BaCl2/AA and SrCl2/ AA) were evaluated for their efficacy in biodiesel production. It was estimated that the microwave-heating method consumes less than 10% of the energy to achieve the same yield as the conventional heating method.;A comparison of the energy consumption for the single step extraction and transesterification for algal biomass by the supercritical methanol (SCM) process and microwave (MW) was evaluated. Energy requirements for supercritical methanol process are much larger than the microwave assisted method. Considering availability of dry algal biomass, supercritical methanol (SCM) process for wet algae needs more energy than microwave irradiation process for dry algae.
机译:由于环境影响,经济依赖和能源安全问题,当前基于化石燃料的经济是不可持续的。因此,重要的是找到一种可再生,可持续和环境友好的替代能源,这将引起人们对生物质,氢,燃料电池和太阳能电池等领域的关注。需要碳中性的可再生液体燃料来代替石油衍生的运输燃料。在当今所有可再生生物燃料来源中,包括可食用,非食用油和微藻类在内的可再生原料中的生物柴油作为可替代的可持续燃料似乎更具前景,因为它是可生物降解,无毒且环保的。使用超临界甲醇和微波辅助酯交换技术对生物柴油进行了研究。湿藻生物质在超临界甲醇工艺中用作原料,干藻生物质用于微波辅助酯交换反应。使用响应表面方法设计了实验运行,并且针对这两个过程优化了工艺参数,例如湿/干藻与甲醇的比例,反应温度,反应时间和催化剂浓度。观察到,两种转化技术都具有为藻类生物质生产生物柴油提供节能途径的潜力。碱性酯交换过程用于从低游离脂肪酸(FFA)的低芥酸菜籽油和玉米植物油生产生物柴油(烷基酯)。使用氢氧化钾(KOH)作为催化剂,该方法的双低油菜籽产量约为80-95%(体积%),而玉米则约为85-96%(vol%)。将生产的生物柴油的燃料特性与生物柴油和普通石油柴油的ASTM标准进行了比较。使用硫酸铁和硫酸催化剂以及超临界甲醇一步法将废弃的食用油转化为甲酯。使用硫酸铁和硫酸催化剂的两步酯交换工艺去除了废烹饪油(WCO)中的高游离脂肪酸含量。;使用不同的多相金属氧化物催化剂优化了油茶的酯交换反应,即评估BaO,SrO,MgO和CaO。催化剂有效性的相对顺序为BaO> SrO> CaO> MgO。研究了使用超临界甲醇与己烷作为助溶剂,亚临界甲醇与氢氧化钾作为助溶剂/催化剂对山茶油的酯交换反应,研究了甲酯转化过程。研究了通过常规加热和微波辐射将茶树油催化转化为生物柴油的过程。评估了三种不同类型的催化剂:均相催化剂(NaOH和KOH),多相金属氧化物催化剂(BaO和SrO)以及溶胶-凝胶衍生催化剂(BaCl2 / AA和SrCl2 / AA)在生物柴油生产中的功效。据估计,微波加热法消耗的能量不到10%,以达到与常规加热方法相同的产率。;超临界甲醇对藻类生物质进行单步萃取和酯交换反应的能耗比较( SCM)工艺并评估了微波(MW)。超临界甲醇工艺的能量需求比微波辅助方法大得多。考虑到干藻生物质的可用性,用于湿藻的超临界甲醇(SCM)工艺比用于干藻的微波辐射工艺需要更多的能量。

著录项

  • 作者

    Patil, Prafulla Dinkarrao.;

  • 作者单位

    New Mexico State University.;

  • 授予单位 New Mexico State University.;
  • 学科 Alternative Energy.;Engineering Chemical.;Engineering Petroleum.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 264 p.
  • 总页数 264
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号