首页> 外文学位 >Kinematic and morphological evolution and dynamics of coronal mass ejections in interplanetary space.
【24h】

Kinematic and morphological evolution and dynamics of coronal mass ejections in interplanetary space.

机译:行星际空间中日冕物质抛射的运动学,形态学演变和动力学。

获取原文
获取原文并翻译 | 示例

摘要

Studies of Coronal mass ejections (CMEs) are scientifically intriguing and practically important. CMEs are the main driver of space weather that specifies plasma, magnetic and particle conditions in near-Earth space. When CMEs pass through and interact with the Earth's magnetosphere, they can cause significant disruption in space and produce a variety of harmful effects on human's technological systems from space to the ground. Many studies have been carried out to understand their evolution. However, their kinematic and morphological evolution as they pass from Sun to Earth is still poorly understood, largely due to the lack of direct observations. Since the launch of the twin-STEREO spacecraft in 2006, tracking of CMEs in interplanetary space was made available for the first time. Further, one could make unprecedented 3-D measurement of CMEs, thanks to the simultaneous observations from two vantage points in space. In this dissertation, I make use of STEREO observations to study the kinematic and morphological evolution of CMEs in interplanetary space. The Raytrace model is utilized as a powerful tool to measure CMEs evolution in 3D. I find that CME leading edge (LE) velocity converges from an initial range between 400 km/s and 1500 km/s at 5 to 10 RS to a narrow range between 500 km/s and 750 km/s at 50 RS. The expansion velocity is also found to converge into a narrow range between 75 km/s and 175 km/s. Both LE and expansion velocities are nearly constant after 50 RS. I further find that the acceleration of CMEs in the inner heliosphere from ∼ 10 to 90 RS can be described by an exponential function, with an initial value as large as ∼ 80 m/s2 but exponentially decreasing to almost zero (more precisely, less than +/- 5 m/s2 considering the uncertainty of measurements). These results are important for constructing accurate space weather prediction models.;In addition to the observational study, I have used the theoretical flux rope model to explain the observations, and find consistency between theory and observation. The evolution of CMEs can be explained by different forces that act on them: Lorentz force, thermal pressure force, gravity force, aero-dynamic drag force, and magnetic drag force. Based on a set of four events, I find that the drag coefficient from CME to CME is between 2.5 to 3.0, which is much smaller than the factor of twelve suggested by earlier studies. Therefore, we have been able to narrow down the range of drag coefficient, which helps improve the prediction of CME arrival time at the Earth.;In the early stage of my Ph.D. study, working with a team, we have identified solar and interplanetary sources of all 88 major geomagnetic storms from 1996 to 2005. We classify the Solar-IP sources into three broad types: (1) S-type, in which the storm is associated with a single ICME and a single CME at the Sun; (2) M-type, in which the storm is associated with a complex solar wind flow produced by multiple interacting ICMEs arising from multiple halo CMEs launched from the Sun in a short period; (3) C-type, in which the storm is associated with a Corotating Interaction Region (CIR) formed at the leading edge of a high-speed stream originating from a solar coronal hole (CH). For the 88 major storms, the S-type, M-type, and C-type events number 53 (60%), 24 (27%), and 11 (13%), respectively. For the 85 events for which the surface source regions could be investigated, 54 (63%) of the storms originated in solar active regions, 11 (13%) in quiet Sun regions associated with quiescent filaments or filament channels, and 11 (13%) were associated with coronal holes. This study improves our understanding of geo-effective CMEs.;In conclusion, the dissertation work has improved our understanding about the kinematic and morphologic evolution of CMEs in interplanetary space. In the future, a larger number of events need to be measured and modeled to further constrain CME evolution models, in particular, the drag coefficient and the polytropic index. We are confident with these studies. We are confident that our studies enable us to construct an accurate empirical model to predict the travel times of CMEs from the Sun to the Earth, thus improving our ability to forecast space weather events.
机译:冠状物质抛射(CME)的研究在科学上很有趣,并且在实践中很重要。 CME是空间天气的主要驱动力,它指定了近地空间中的等离子体,磁场和粒子状况。当CME通过并与地球的磁层相互作用时,它们会引起空间的重大破坏,并从空间到地面对人类的技术系统产生各种有害影响。已经进行了许多研究以了解它们的进化。然而,由于缺乏直接观测,它们从太阳到地球的运动学和形态学演变仍然知之甚少。自2006年双STEREO航天器发射以来,首次提供了对行星际空间CME的跟踪。此外,得益于从太空中两个有利位置进行的同时观测,人们可以对CME进行3D前所未有的测量。在本文中,我利用STEREO观测研究了CME在行星际空间中的运动学和形态演化。 Raytrace模型被用作测量3D中CME演变的强大工具。我发现CME前沿(LE)速度从5到10 RS时的400 km / s至1500 km / s的初始范围收敛到50 RS时500 km / s至750 km / s的狭窄范围。还发现膨胀速度收敛在75 km / s和175 km / s之间的狭窄范围内。 50 RS后,LE和膨胀速度几乎恒定。我进一步发现,CME在内部日球层中从〜10 RS加速到90 RS可以用指数函数描述,其初始值高达〜80 m / s2,但指数减小到几乎为零(更精确地说,小于+/- 5 m / s2(考虑到测量的不确定性)。这些结果对于构建精确的空间天气预报模型很重要。除了观测研究,我还使用理论通量绳模型来解释观测结果,并找到理论和观测之间的一致性。 CME的演化可以用作用在它们上的不同力来解释:洛仑兹力,热压力,重力,气动阻力和磁阻力。基于一组四个事件,我发现从CME到CME的阻力系数在2.5到3.0之间,这比早期研究建议的系数12小得多。因此,我们能够缩小阻力系数的范围,这有助于改善CME到达地球时间的预测。这项研究与团队合作,我们确定了1996年至2005年间所有88次主要地磁风暴的太阳和行星际源。我们将Solar-IP源分为三大类:(1)S型,与风暴有关在太阳有一个ICME和一个CME; (2)M型,风暴与短时间内从太阳发射的多个光晕CME引起的多个相互作用的ICME产生的复杂的太阳风流有关; (3)C型,其中风暴与源自太阳日冕孔(CH)的高速流的前缘形成的同向相互作用区域(CIR)相关。在88次大风暴中,S型,M型和C型事件分别为53(60%),24(27%)和11(13%)。对于可以调查地表源区域的85个事件,风暴中有54(63%)个来自太阳活动区域,与静止的灯丝或灯丝通道相关的安静太阳区域中有11个(13%),以及11个(13%) )与冠状孔有关。这项研究提高了我们对地球有效的CMEs的理解。总之,论文工作提高了我们对CME在行星际空间中运动学和形态学演变的认识。将来,需要对大量事件进行测量和建模,以进一步约束CME演化模型,尤其是阻力系数和多变指数。我们对这些研究充满信心。我们相信,我们的研究使我们能够构建一个准确的经验模型来预测CME从太阳到地球的旅行时间,从而提高我们预测太空天气事件的能力。

著录项

  • 作者

    Poomvises, Watanachak.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Physics Astrophysics.;Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号