首页> 外文学位 >Biomolecular structure and dynamics: Algorithm development and applications to DNA-transcription promoter elements.
【24h】

Biomolecular structure and dynamics: Algorithm development and applications to DNA-transcription promoter elements.

机译:生物分子的结构和动力学:算法开发及其在DNA转录启动子元件中的应用。

获取原文
获取原文并翻译 | 示例

摘要

With suitable force fields and integration protocols, computer simulations of large biomolecular systems can offer insights into molecular structure, flexibility and functionality. Scientists are continuously trimming down algorithmic cost to economize code performance while enhancing the biological models with more detail and realism. In our work, we address some fundamental aspects in biomolecular simulation methodology: (i) proper implemention of mathematical machinery to mimic realistic thermodynamic ensembles (Chapter 1); (ii) the design of accurate and efficient multiple-timestep (MTS) integrators tailored for Ewald electrostatic formulations (Chapter 2 and 3); and (iii) the preparation of an efficient space-filling periodic boundary model to handle various domains (Chapter 4). These investigations have produced a program (PBCAID) to initialize and optimize a periodic lattice specified as one of several known space-filling polyhedra, which leads to computational savings in the nonbonded computations from reduced solvent sizes, our resonance and stability analysis for different Verlet integrators have provided guidelines for designing new MTS integrators; indeed, a new efficient MTS force splitting scheme for particle-mesh-Ewald molecular dynamics simulations, was developed and implemented in the Amber program, exhibiting good speedup and excellent stability.; As an application of these combined algorithmic developments, we explore the fundamental relationship between DNA sequence/deformability and biological function (Chapter 5) for a classic regulatory system, the complex between the TATA element transcriptional regulator and TBP (TATA-Box Binding Protein). We present the molecular dynamics simulation results of 13 TATA variants that differ by a single base pair, and analyze sequence-dependent structural, energetic, and flexibility properties that tailor TATA elements to TBP interactions. Such factors include overall flexibility; minor groove widening, as well as roll, rise, and shift increases at the ends of the TATA element; untwisting throughout the DNA; and relatively low maximal water densities around the DNA. These structural patterns, identified here and connected to a new crystallographic study of a larger group of DNA variants that reported to date, highlight the profound influence of single base pair DNA variations on structure, flexibility, and hydration preferences and the evolutionary complementarity between DNAs and proteins in binding and activity.
机译:借助合适的力场和集成规程,大型生物分子系统的计算机仿真可以洞悉分子结构,灵活性和功能性。科学家们正在不断削减算法成本,以节省代码性能,同时更详细,更真实地增强生物学模型。在我们的工作中,我们讨论了生物分子模拟方法中的一些基本方面:(i)正确实施数学机制以模仿现实的热力学合奏(第1章); (ii)针对Ewald静电配方量身定制的准确高效的多步(MTS)积分器的设计(第2章和第3章); (iii)准备一个有效的空间填充周期性边界模型来处理各个领域(第4章)。这些研究产生了一个程序(PBCAID),用于初始化和优化指定为几种已知的填充多面体中的一种的周期性晶格,这可通过减少溶剂尺寸,不同Verlet积分器的共振和稳定性分析来节省非键合计算的计算量。为设计新的MTS集成商提供了指导;实际上,在Amber程序中开发并实施了一种新的有效的MTS力分裂方案,用于粒子-网格-Ewald分子动力学模拟,具有良好的加速性能和出色的稳定性。作为这些组合算法开发的应用,我们探索了经典调控系统(TATA元件转录调控因子和TBP(TATA-Box结合蛋白)之间的复合物)的DNA序列/可变形性与生物学功能之间的基本关系(第5章)。我们介绍了13个TATA变体的分子动力学模拟结果,这些变体之间仅有一个碱基对,并且分析了将TATA元素与TBP相互作用相适应的依赖序列的结构,能量和柔韧性。这些因素包括总体灵活性;在TATA元件的端部,较小的凹槽变宽以及滚动,上升和移位增加;整个DNA解开; DNA周围的最大水密度相对较低。这些结构模式已在此处确定,并与迄今报道的对较大的一组DNA变异的新晶体学研究有关,突显了单碱基对DNA变异对结构,柔性和水合偏好以及DNA与DNA之间的进化互补性的深远影响。蛋白质的结合和活性。

著录项

  • 作者

    Qian, Xiaoliang.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号