首页> 外文学位 >Analysis of substrate channeling and substrate specificity in 6-deoxyerythronolide B synthase.
【24h】

Analysis of substrate channeling and substrate specificity in 6-deoxyerythronolide B synthase.

机译:6-脱氧赤藓醇B合酶的底物通道和底物特异性分析。

获取原文
获取原文并翻译 | 示例

摘要

6-Deoxyerythronolide B synthase (DEBS) is the modular polyketide synthase that catalyzes the biosynthesis of 6-deoxyerythronolide B (6-dEB), the aglycon precursor of the antibiotic erythromycin. The transparent relationship between protein sequence and enzyme function that is common to all modular PKSs makes these enzymes attractive scaffolds for the development of novel biosynthetic compounds through a process known as combinatorial biosynthesis.; Two issues that are fundamental to the development of modular PKSs as a scaffold for combinatorial biosynthesis are substrate specificity and intermodular substrate channeling. The work in this thesis investigates the substrate specificity of individual DEBS modules in the context of a diffusive-loading mechanism and in the context of a channeling mechanism.; In an in vivo experiment, a DEBS KS1 knockout system (pJRJ2/CH999) is demonstrated to be tolerant of a methoxy substituent in place of the natural methyl substituent at the α-position of an N-acetylcysteamine activated diketide, producing a novel 12-methoxy-6-deoxyerythronolide B compound.; A systematic in vitro study of the kinetic effects of stereochemical variations in diffusively-loaded diketides with individual DEBS modules purified from Escherichia coli demonstrates that all four of the tested modules manifest similar substrate specificity profiles, despite the dramatically different structures of their natural substrates. When placed in a channeling context such that the substrates are transferred from a donor ACP domain to the acceptor module, these modules also manifest similar substrate specificity profiles. However, the channeling mechanism endows a kinetic advantage of up to two orders of magnitude and a specificity advantage of up to four orders of magnitude over the diffusive mechanism.; An investigation of the relative contributions of N- and C-terminal linker interactions versus the contributions of donor ACP-acceptor KS interactions revealed that while KS domains of C-terminal modules (e.g., modules 2 and 6) are promiscuous towards unnatural upstream donor ACP domains, KS domains of N-terminal modules (e.g., modules 3 and 5) are specific for their natural upstream ACP domains. From the sum of the lessons learned through these experiments, a basic set of rules for engineering heterologous PKS assembly lines is proposed.
机译:6-脱氧赤藓醇B合酶(DEBS)是模块化的聚酮化合物合酶,可催化6-脱氧赤藓醇B(6-dEB)的生物合成,这是抗生素红霉素的糖苷配基前体。所有模块化PKS所共有的蛋白质序列和酶功能之间的透明关系,使这些酶成为通过组合生物合成过程开发新型生物合成化合物的有吸引力的支架。模块化PKS作为组合生物合成支架开发的两个基本问题是底物特异性和模块间底物通道化。本文的工作是在扩散加载机制和通道机制下研究各个DEBS模块的底物特异性。在 in vivo 实验中,DEBS KS1基因敲除系统(pJRJ2 / CH999)被证明可以耐受甲氧基取代基,取代N-乙酰半胱胺活化的α-位的天然甲基取代基双酮化合物,产生新的12-甲氧基-6-脱氧赤藓醇B化合物。一项系统的体外研究,用从 Escherichia coli 纯化的单个DEBS模块,扩散负载的二酮化合物中立体化学变化的动力学效应,表明所有四个测试模块均显示相似的底物尽管它们的天然底物结构差异很大,但特异性分布却很明显。当置于通道环境中以使底物从供体ACP结构域转移至受体模块时,这些模块也表现出相似的底物特异性特征。然而,与扩散机制相比,引导机制具有高达两个数量级的动力学优势和高达四个数量级的特异性优势。对N末端和C末端接头相互作用的相对贡献与供体ACP受体KS相互作用的贡献的调查显示,尽管C末端模块(例如,模块2和6)的KS结构域与不自然的上游供体ACP混杂N末端模块(例如,模块3和5)的KS域,KS域专用于其自然上游ACP域。根据从这些实验中学到的经验教训,提出了一套工程异源PKS装配线的基本规则。

著录项

  • 作者

    Wu, Nicholas.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号