首页> 外文学位 >Manipulation and coherence of a two-electron logical spin qubit using gallium arsenide double quantum dots.
【24h】

Manipulation and coherence of a two-electron logical spin qubit using gallium arsenide double quantum dots.

机译:使用砷化镓双量子点的双电子逻辑自旋量子位的操纵和相干性。

获取原文
获取原文并翻译 | 示例

摘要

Spin qubits have been considered promising candidates for quantum computation due to their expected long coherence times. In a solid state environment, such as GaAs, electrons confined to quantum dots interact with an ensemble of about a million nuclei through hyperfine interaction. The polarization of the nuclear bath fluctuates around a zero mean which was considered to be a serious obstacle towards extending the qubit's coherence time T2 beyond approximately 1 microsecond. In addition, the inhomogeneous coherence time T*2 has been measured to be in the range of 10 ns, ultimately limiting the fidelity of the qubit.;Here we explore, using two electron logical spin qubits in GaAs, the possibility of achieving universal control of the qubit's state and of prolonging the qubits coherence times. Our main results include: (1) Dynamical polarization of the nuclei to reach local magnetic field gradients up to 200 mT. (2) The use of local field gradients to perform universal quantum control and quantum state tomography of the qubit. (3) The use of a quantum feedback mechanism intrinsic to our system in order to pump the nuclear bath and simultaneously narrow its distribution, thereby reducing the amplitude of its stochastic fluctuations that lead to inhomogeneous dephasing. (4) Using decoupling techniques well established in NMR we show that we can extend the homogeneous coherence time of the qubit by three orders of magnitude compared to previous reports. (5) Unraveling the contribution of spin-orbit coupling to the nuclear dynamic polarization using a pumping scheme that never exchanges electrons with the reservoir. The modulation of the polarization efficiency by the nuclear Larmor precession period is interpreted as arising from the coherent interplay of spin-orbit and hyperfine interaction.
机译:自旋量子位因其预期的长相干时间而被认为是有前途的量子计算候选者。在固态环境(例如GaAs)中,局限在量子点中的电子通过超精细相互作用与约一百万个原子核的集合相互作用。核浴的极化在零均值附近波动,这被认为是将量子位相干时间T2延长到大约1微秒以上的严重障碍。此外,非均匀相干时间T * 2被测得在10 ns的范围内,最终限制了量子位的保真度。;在此,我们探索了在GaAs中使用两个电子逻辑自旋量子位实现通用控制的可能性量子位状态和延长量子位相干时间。我们的主要结果包括:(1)原子核的动态极化,以达到高达200 mT的局部磁场梯度。 (2)使用局部场梯度执行量子位的通用量子控制和量子状态层析成像。 (3)使用系统固有的量子反馈机制来泵送核浴并同时缩小其分布范围,从而减小导致不均匀移相的随机波动幅度。 (4)使用在NMR中建立良好的去耦技术,我们证明与以前的报道相比,我们可以将qubit的均匀相干时间延长三个数量级。 (5)利用从未与储层交换电子的泵浦方案来揭示自旋轨道耦合对核动力极化的贡献。核拉莫尔进动周期对极化效率的调节被解释为是自旋轨道和超精细相互作用的相干相互作用。

著录项

  • 作者

    Foletti, Sandra Elisabetta.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Low Temperature.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号