首页> 外文学位 >In silico exploration of the metabolic solution space.
【24h】

In silico exploration of the metabolic solution space.

机译:在计算机上探索代谢溶液的空间。

获取原文
获取原文并翻译 | 示例

摘要

This work developed methods in constraint-based modeling to understand, interpret, and ultimately predict cellular behavior. The first detailed, physiologic interpretation of extreme pathways for a complete, elementally balanced metabolic system, the human red blood cell, was carried out. The 39 red blood cell extreme pathways were classified into nine physiologically meaningful groups. Next, the alpha-spectrum method was developed in which the extreme pathways that can and can not participate in the reconstruction of a steady state metabolic solution are identified. The alpha-spectrum method was used to interpret systems-level regulation of the red cell extreme pathways as a function of NADPH and NADH stressed states simulated using a dynamic model. The alpha-spectrum analysis was then applied to the 2441 extreme pathways of core Escherichia coli metabolism and experimentally measured fluxomic data were incorporated as additional constraints. Singular value decomposition of a condition-specific extreme pathway matrix (identified using the alpha-spectrum) illustrated the ability of the first mode to predict the network's nominal internal flux distributions. The results showed the utility of the alpha-spectrum method to greatly reduce the size of the metabolic solution space by eliminating up to 80% of the network's extreme pathways. The size of the metabolic solution space was determined using various methods. For sample networks, the volume was calculated exactly using methods of simplicial subdivision and signed decomposition. For larger metabolic systems, these algorithms are computationally intractable so Monte Carlo sampling was implemented to determine the relative size and shape of the steady state solution space. Reducing the v max for each reaction in the network by 50% caused a reduction in the size of the solution space that ranged from 7--96% depending on the reaction. Finally, measurements of kinetic parameters associated with single nucleotide polymorphisms (SNPs) of glucose-6-phosphate dehydrogenase and pyruvate kinase in 46 anemic patients were incorporated into a dynamic model of the human red blood cell. This study was a pioneering effort in which the in silico model of metabolism was used to qualitatively predict patients' phenotypes (pathophysiological states) from their genotype based on an analysis of the NADP/NADPH under nominal and stressed states.
机译:这项工作开发了基于约束的建模方法来理解,解释和最终预测细胞行为。对完整的,基本平衡的代谢系统即人类红细胞的极端途径进行了首次详细的生理学解释。 39条红细胞极端途径分为9个具有生理意义的组。接下来,开发了α光谱方法,其中确定了可以和不能参与稳态代谢溶液重建的极端途径。使用alpha光谱方法将红细胞极端途径的系统级调节解释为使用动态模型模拟的NADPH和NADH应激状态的函数。然后,将α光谱分析应用于核心大肠杆菌代谢的2441个极端途径,并结合实验测量的通量数据作为附加约束条件。特定条件的极端路径矩阵(使用alpha光谱确定)的奇异值分解说明了第一模式预测网络名义内部通量分布的能力。结果表明,通过消除多达80%的网络极端路径,α光谱方法可大大减小代谢溶液空间的大小。使用各种方法确定代谢溶液空间的大小。对于样本网络,使用简单细分和有符号分解的方法精确计算了体积。对于较大的代谢系统,这些算法在计算上难以处理,因此实施了蒙特卡洛采样以确定稳态溶液空间的相对大小和形状。将网络中每个反应的v max降低50%会导致溶液空间的大小减少7-96%,具体取决于反应。最后,将46名贫血患者中与葡萄糖-6-磷酸脱氢酶和丙酮酸激酶的单核苷酸多态性(SNP)相关的动力学参数的测量结果纳入人类红细胞的动力学模型。这项研究是一项开创性的工作,其中使用代谢的计算机模拟模型,根据对正常和压力状态下的NADP / NADPH的分析,从其基因型定性预测患者的表型(病理生理状态)。

著录项

  • 作者

    Wiback, Sharon Jane.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号