首页> 外文学位 >Cellular and molecular analysis of motor neuron development in the zebrafish hindbrain.
【24h】

Cellular and molecular analysis of motor neuron development in the zebrafish hindbrain.

机译:斑马鱼后脑运动神经元发育的细胞和分子分析。

获取原文
获取原文并翻译 | 示例

摘要

Proper development of the nervous system depends upon the production of neurons in the correct numbers, and in the correct locations. Many cell fate decisions in the developing nervous system depend on intercellular signaling mediated by the transmembrane proteins Notch and Delta. Failure of Notch signaling in zebrafish mind bomb (mib) mutants generates a neurogenic phenotype in the hindbrain characterized by the overproduction of some neuronal cell types, and accompanied by a significant loss of motor neurons and neuroepithelial cells. Genetic mosaic analysis indicates that hindbrain motor neuron patterning and fusion defects in mib mutants arise non-cell autonomously, partly due to the differentiation of midline neuroepithelial cells into neurons. These results highlight the importance of non-neuronal cells to rhombomere boundaries formation and midline tissues which are the sources of signals for numerous patterning mechanisms within the developing brain.; Additional signaling pathways act on these neuronal precursors to induce the formation of specific neuronal types. For example, motor neurons are induced by secreted proteins encoded by the hedgehog gene family. Mutations in shh alone lead to reduced induction of hindbrain motor neurons, while reduction of twhh expression does not affect motor neuron number. However, when both functions of twhh and shh are disrupted, there is a complete failure to induce hindbrain motor neurons. These results demonstrate that shh and twhh play a cooperative role in zebrafish hindbrain motor neuron induction, and suggest that hindbrain motor neuron induction in zebrafish may be dependent on the concentration of total hedgehog activity, rather than different hedgehog proteins.; A subset of motor neurons migrates tangentially into more caudal hindbrain locations following induction in anterior hindbrain regions in the wild-type zebrafish but fail to do so in the trilobite mutant. Genetic mosaic analysis revealed that the neuronal migration defect in tri mutants is due to the loss of cell autonomous and non-cell autonomous tri function. In vivo time-lapse and molecular analyses demonstrate that mutations in the zebrafish gene trilobite (tri) specifically affect the ability of motor neurons in the hindbrain to polarize their protrusions, leading to the elimination of tangential motor neuron migration. We now know that tri encodes the Planar Cell Polarity gene, Strabismus, previously unidentified for its role in mediating neuronal cell movements. tri therefore represents an important genetic tool in understanding the mechanisms underlying tangential neuronal migration.
机译:神经系统的正确发育取决于正确数量和正确位置的神经元的产生。神经系统发育中的许多细胞命运决定取决于跨膜蛋白Notch和Delta介导的细胞间信号传导。斑马鱼思维炸弹(mib)突变体中Notch信号的失败在后脑产生了神经源性表型,其特征是某些神经元细胞类型的过度生产,并伴有运动神经元和神经上皮细胞的大量损失。遗传镶嵌分析表明,mib突变体中的后脑运动神经元模式和融合缺陷非细胞自主发生,部分原因是中线神经上皮细胞分化为神经元。这些结果突显了非神经细胞对菱形边界形成和中线组织的重要性,这些是发育中脑内多种模式机制的信号源。其他信号通路作用于这些神经元前体,以诱导特定神经元类型的形成。例如,运动神经元由刺猬基因家族编码的分泌蛋白诱导。单独的shh突变会导致后脑运动神经元的诱导减少,而twhh表达的减少并不影响运动神经元的数量。但是,当twhh和shh的两个功能都被破坏时,完全无法诱导后脑运动神经元。这些结果表明shh和twhh在斑马鱼后脑运动神经元诱导中起协同作用,并表明斑马鱼中后脑运动神经元的诱导可能取决于总刺猬活性的浓度,而不是不同的刺猬蛋白。在野生型斑马鱼的前后脑区域被诱导后,运动神经元的子集会切向迁移到更多的尾后脑位置,但在三叶虫突变体中却不能这样做。遗传镶嵌分析表明,三突变体中的神经元迁移缺陷是由于丧失了细胞自主和非细胞自主三功能。体内时移和分子分析表明,斑马鱼基因三叶虫(tri)中的突变特别影响后脑中运动神经元极化其突起的能力,从而消除了切向运动神经元迁移。我们现在知道,tri编码平面细胞极性基因Strabismus,该基因以前在其介导神经元细胞运动中的作用尚不清楚。因此,tri代表着重要的遗传工具,可帮助理解切向神经元迁移的潜在机制。

著录项

  • 作者

    Bingham, Stephanie.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Biology Molecular.; Biology Neuroscience.; Biology Cell.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;神经科学;细胞生物学;
  • 关键词

  • 入库时间 2022-08-17 11:45:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号