首页> 外文学位 >Effects of non-uniform substrate temperature in high-performance integrated circuits: Modeling, analysis, and implications for signal integrity and interconnect performance optimization.
【24h】

Effects of non-uniform substrate temperature in high-performance integrated circuits: Modeling, analysis, and implications for signal integrity and interconnect performance optimization.

机译:高性能集成电路中基板温度不均匀的影响:建模,分析以及对信号完整性和互连性能优化的影响。

获取原文
获取原文并翻译 | 示例

摘要

The ever-increasing demand for complex ULSI (Ultra Large Scale Integration) circuits with higher performance is leading to higher clock frequencies and device packing density, which results in large on-chip power dissipation. The large power consumption results in dramatic increase in device junction temperature. Furthermore, different switching activities and/or sleep modes of various functional blocks and dynamic power management policies can be major sources of thermal non-uniformities over the Silicon substrate. Without adequate thermal engineering, significant non-uniform temperature distributions can lead to considerable interconnect thermal gradients and substrate hot-spots. Hence, thermal management is essential to the development of future generations of microprocessors, integrated network processors, and systems-on-a-chip (SOC). At the circuit level, temperature variations in the substrate and interconnect lines have important implications for circuit performance and reliability.; The research presented in this thesis focuses on analysis and modeling of non-uniform chip temperature profile and the study of its effects on different aspects of signal integrity and performance in very high-performance ULSI designs. This dissertation makes contributions in four distinct, yet related, areas. First, a detailed analysis of the interconnect temperature distributions in the presence of non-uniform substrate thermal profiles is presented. To study the effect of non-uniform substrate temperature on the signal performance in interconnects, a non-uniform temperature-dependent distributed RC interconnect delay model is proposed. Second, by using the proposed temperature-dependent RC delay model, it is shown that clock distribution networks are one of the most vulnerable signal nets to the substrate thermal non-uniformities. Subsequently, a thermally driven near-zero-skew clock routing methodology is proposed. Third, it is shown that the non-uniform substrate temperatures can affect the optimal buffer insertion techniques. Consequently, a new design methodology is provided to reduce the impact of these effects on the optimality of the buffer insertion. Finally, the effects of substrate hot-spots and technology scaling on the worst-case power distribution network voltage (IR) drop are examined. By introducing these studies and methodologies for the first time, it is shown how the presence of substrate non-uniform temperatures can severely degrade the performance of the circuits resulting from conventional design flows.
机译:对具有更高性能的复杂ULSI(超大规模集成电路)电路的不断增长的需求导致更高的时钟频率和器件封装密度,从而导致大的片上功耗。大功耗导致器件结温急剧上升。此外,各种功能块的不同开关活动和/或睡眠模式以及动态功率管理策略可能是硅衬底上热不均匀的主要来源。如果没有足够的热工程学,明显的不均匀温度分布会导致相当大的互连热梯度和基板热点。因此,热管理对于开发下一代微处理器,集成网络处理器和片上系统( SOC )至关重要。在电路级,基板和互连线中的温度变化对电路性能和可靠性具有重要意义。本文提出的研究重点在于非均匀芯片温度曲线的分析和建模,以及在超高性能ULSI设计中其对信号完整性和性能不同方面的影响的研究。本文在四个不同但又相关的领域做出了贡献。首先,给出了在存在不均匀的基板热分布的情况下对互连温度分布的详细分析。为了研究衬底温度不均匀对互连中信号性能的影响,提出了一种温度不均匀的分布式RC互连延迟模型。其次,通过使用提出的依赖温度的 RC 延迟模型,表明时钟分配网络是基板热不均匀性最脆弱的信号网络之一。随后,提出了一种热驱动的接近零偏斜时钟路由方法。第三,表明不均匀的基板温度会影响最佳的缓冲液插入技术。因此,提供了一种新的设计方法,以减少这些影响对缓冲区插入的最优性的影响。最后,研究了基板热点和技术缩放对最坏情况下的配电网络电压(IR)下降的影响。通过首次引入这些研究和方法,表明了基板温度不均匀的存在会如何严重降低由传统设计流程导致的电路性能。

著录项

  • 作者

    Ajami, Amir Hooshang.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:45:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号