首页> 外文学位 >Study of anisotropic scaling and intermittency of aerosols using airborne lidar.
【24h】

Study of anisotropic scaling and intermittency of aerosols using airborne lidar.

机译:使用机载激光雷达研究气溶胶的各向异性定标和间歇性。

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear processes, such as passive scalar fluctuation, driven by the turbulent wind field, exhibit extreme variability over a wide range of Space-time scales and intensities. As a result of the complexity of those fields, the theoretical treat merit of turbulence is a long-standing challenge of fluid mechanics. An empirical study of stochastic fluctuations in atmospheric aerosol concentration using state of the art lidar data is the subject of this thesis. The statistics of the fluctuations in the scalar field are closely related to those of the turbulent wind field. Initially, a detailed review of the treatments of such turbulent atmospheric fields that is commonly found in the litterature is given. The main strands of research relevant to a statistical understanding of atmospheric dynamics are (1) isotropic hydrodynamic turbulence in 2D and 3D (with extensions), (2) buoyancy driven flows, (3) gravity wave theories, (4) closures, (5) direct numerical simulations. It is argued that all current approaches treat the anisotropy of the dynamics and the characteristic intermittency inappropriately. Already existing—albeit—empirical evidence is then used to motivate the relevance of Generalized Scale Invariance and the Unified Scaling Model (e.g. [Schertzer and Lovejoy, 1983, 1984, 1985]) which models turbulent atmospheric fields as anisotropic multifractal cascade processes. This model implies the anisotropic multiscaling of the fields over the entire range of spatial scales and that variability increases algebraically downscale leading to a highly intermittent field.;For each individual data set as well as for the ensemble average, excellent agreement was found with the theoretical predictions of the model. In Fourier space, scalar fluctuations as a function of horizontal wavenumber scale with the Kolmogorov exponent βh = -5/3 [Kolmogorov, 1941] corresponding to the real space exponent Hh = 1/3 which was itself also obtained from the first order structure function with a very good degree of agreement with the theory. Scalar fluctuations as a function of vertical wavenumber scale with the Bolgiano-Obukhov exponent β v -11/5 [Bolgiano, 1959] corresponding to the real space exponent Hv = 3/5 also verified with the first order structure function. The ratio Hz = 5/9 of those exponents corresponds to a measure of the anisotropy of the dynamics and implies an effective fractal elliptical dimension Del = 23/9. The single scale of isotropy throughout the scaling range is the sphero-scale ℓ s and corresponds to the scale at which the amplitude of the dynamics in the vertical equals that of those in the horizontal. This amplitude can be quite variable depending on atmospheric conditions. It was found that ℓ s varied between 3 cm and 80 cm, implying flattened structures almost all the way to the dissipation scale. Usina TRM and DTM, it was found that the Universal Multifractal parameters α and C 1 are equal to 1.8 and 0.037 (in the horizontal) or 0.053 (in the vertical) respectively. These values are comparable to those found in the literature. Overall, very good consistency was obtained between the predictions of the Unified Scaling Model, throughout the analyses, and with existing results.;Recognizing the necessity for an improved, systematic and thorough empirical test of the Unified Scaling Model, we analyzed high resolution aircraft lidar atmospheric aerosol backscatter ratio data, verified to be a good surrogate of the aerosol concentration, and taken to be a very good approximation for a passive scalar. Fourier analysis and structure function analysis were used to test the anisotropie scaling and multi-scaling properties exhibited by the scalar fluctuations. Trace Moment (TRM) and Double Trace Moment (DTM) analyses (e.g. [Schertzer and Lovejoy, 1993], [Lavallée et al., 1993]) were used to determine the Universal Multifractal critical exponents of the underlying energy fluxes (e .g. Schertzer and Lovejoy, 1993]). The analyses were conducted on nine data sets with a horizontal range of scales between 100 m and 100 km, and with a vertical range of scales between 3 m and 4.5 km.
机译:湍流风场驱动的非线性过程(例如被动标量波动)在很大的时空范围和强度范围内表现出极大的可变性。由于这些领域的复杂性,湍流的理论处理优点是流体力学的长期挑战。本文利用激光雷达的最新数据对大气气溶胶浓度的随机波动进行实证研究。标量场波动的统计与湍流风场的统计密切相关。首先,详细介绍了文学界常见的这种湍流大气场的处理方法。与大气动力学的统计理解有关的主要研究领域是(1)2D和3D(具有扩展性)的各向同性流体动力湍流,(2)浮力驱动流,(3)重力波理论,(4)闭合,(5 )直接数值模拟。有人认为,目前所有的方法都不适当地处理了动力学的各向异性和特征的间歇性问题。然后,已经存在的经验证据被用来激发广义尺度不变性和统一尺度模型(例如[Schertzer and Lovejoy,1983,1984,1985])的相关性,该模型将湍流大气场建模为各向异性的多重分形级联过程。该模型暗示了在整个空间尺度范围内场的各向异性多尺度化,并且可变性随着代数尺度的减小而增加,从而导致了高度间歇性的场。;对于每个单独的数据集以及整体平均而言,与理论都发现了很好的一致性模型的预测。在傅立叶空间中,标量波动是水平波数标度的函数,其中Kolmogorov指数βh= -5/3 [Kolmogorov,1941]对应于实际空间指数Hh = 1/3,其本身也是从一阶结构函数获得的与理论非常一致。标量波动是垂直波数尺度的函数,其中Bolgiano-Obukhov指数βv -11/5 [Bolgiano,1959]对应于实数空间指数Hv = 3/5,也已通过一阶结构函数得到了验证。这些指数的比率Hz = 5/9对应于动力学各向异性的量度,并且表示有效的分形椭圆尺寸Del = 23/9。在整个标度范围内,各向同性的单个标度是球形标度ℓ。 s并对应于标度,在该标度下,垂直方向上的动态振幅等于水平方向上的动态振幅。该幅度可以根据大气条件而变化很大。发现ℓ s在3厘米至80厘米之间变化,这意味着扁平化的结构几乎一直到耗散范围。使用Usina TRM和DTM,发现通用多重分形参数α和C 1分别等于1.8和0.037(水平)或0.053(垂直)。这些值与文献中的值相当。总体而言,在整个分析过程中,统一缩放模型的预测之间以及与现有结果之间都获得了很好的一致性。认识到对统一缩放模型进行改进,系统和彻底的经验测试的必要性,我们分析了高分辨率飞机激光雷达大气气溶胶后向散射比数据,经证实是气溶胶浓度的良好替代,并且对于被动标量而言,非常近似。使用傅立叶分析和结构函数分析来测试标量波动所表现出的各向异性标度和多标度特性。迹线矩(TRM)和双迹线矩(DTM)分析(例如[Schertzer and Lovejoy,1993],[Lavalléeet al。,1993])用于确定基本能量通量的通用多重分形临界指数(例如[Schertzer and Lovejoy,1993]。在九个数据集上进行了分析,水平范围在100 m至100 km之间,垂直范围在3 m至4.5 km之间。

著录项

  • 作者

    Lilley, Marc.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Geophysics.;Remote Sensing.;Atmospheric Sciences.
  • 学位 M.Sc.
  • 年度 2003
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号