首页> 外文学位 >Numerical study and load and resistance factor design (LRFD) calibration for reinforced soil retaining walls.
【24h】

Numerical study and load and resistance factor design (LRFD) calibration for reinforced soil retaining walls.

机译:钢筋混凝土挡土墙的数值研究以及荷载和阻力系数设计(LRFD)校准。

获取原文
获取原文并翻译 | 示例

摘要

Load and resistance factor design (LRFD) (often called limit states design (LSD)) has been mandated in the AASHTO Bridge Design Specifications and will be adopted in future editions of Canadian Highway Bridge Design Code for all transportation-related structures including reinforced soil retaining walls. The ultimate objective of this thesis work was to carry out reliability-based analysis for load and resistance factor design calibration for rupture and pullout limit states for steel and geosynthetic reinforced soil walls under self-weight and permanent surcharge loading conditions. In order to meet this objective it was necessary to generate large databases of measured load and resistance data from many sources and in some cases to propose new design models that improve the accuracy of underlying deterministic load and resistance models. Numerical models were also developed to model reinforced soil wall performance. These models were used to investigate load prediction accuracy of current analytical reinforcement load models. An important feature of the calibration method adopted in this study is the use of bias statistics to account for prediction accuracy of the underlying deterministic models for load and resistance calculations, random variability in input parameter values, spatial variation and quality of data. In this thesis, bias is defined as the ratio of measured to predicted value. The most important end product of the work described in this thesis is tabulated resistance factors for rupture and pullout limit states for the internal stability of steel and geosynthetic reinforced soil walls. These factors are developed for geosynthetic reinforced soil wall design using the current AASHTO Simplified Method, a new modified Simplified Method, and the recently proposed K-Stiffness Method. Useful quantitative comparisons are made between these three methods by introducing the concept of computed operational factors of safety. This allows designers to quantify the actual margin of safety using different design approaches.
机译:荷载和阻力系数设计(LRFD)(通常称为极限状态设计(LSD))已在AASHTO桥梁设计规范中强制规定,并将在《加拿大公路桥梁设计规范》的未来版本中采用,用于与运输相关的所有结构,包括加筋土保持墙壁。本文工作的最终目的是在自重和永久超载条件下,对钢结构和土工合成材料加筋土墙的破裂和拉拔极限状态进行基于载荷和阻力因子设计标定的基于可靠性的分析。为了实现此目标,有必要从许多来源生成大型的测量负载和电阻数据数据库,并在某些情况下提出新的设计模型,以提高基础确定性负载和电阻模型的准确性。还开发了数值模型来模拟加筋土墙的性能。这些模型用于研究当前分析性加固荷载模型的荷载预测精度。本研究中采用的校准方法的一个重要特征是使用偏差统计数据来解释用于负载和阻力计算的基础确定性模型的预测准确性,输入参数值的随机变异性,空间变化和数据质量。在本文中,偏差定义为测量值与预测值之比。本文描述的工作的最重要的最终产品是用于钢和土工合成材料加筋土墙内部稳定性的断裂和拉拔极限状态的列表电阻系数。这些因素是使用当前的AASHTO简化方法,新的改进的简化方法以及最近提出的K-刚度方法为土工合成加筋土墙设计而开发的。通过引入计算的安全操作因素的概念,在这三种方法之间进行了有用的定量比较。这使设计人员可以使用不同的设计方法来量化实际的安全裕度。

著录项

  • 作者

    Huang, Bing Quan.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 407 p.
  • 总页数 407
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号