首页> 外文学位 >Evolution and dynamic behavior of transfer RNA in the first two steps of translation.
【24h】

Evolution and dynamic behavior of transfer RNA in the first two steps of translation.

机译:翻译的前两个步骤中转移RNA的进化和动态行为。

获取原文
获取原文并翻译 | 示例

摘要

In protein synthesis, a key component of the cellular machinery is transfer RNA (tRNA). This small nucleic acid is crucial to the maintenance of the genetic code because it discriminately binds the messenger RNA codon at the ribosome and adds the cognate amino acid to the growing polypeptide chain. The role of tRNA as an adaptor molecule has been understood for decades, but details about the charging of tRNA with cognate amino acids prior to entering the ribosome are still emerging. Aminoacyl-tRNA synthetases (aaRSs) are enzymes that recognize specific tRNAs and amino acids from the cellular pool and facilitate the charging of the correct amino acids on tRNAs. Following aminoacylation, tRNAs dissociate from the aaRSs and bind the elongation factor Tu (EF-Tu) for delivery to the ribosome.;The recognition of specific tRNA species by the aaRSs, EF-Tu, and other enzymes along the translation pathway is based on sets of highly conserved nucleotides within different groups of tRNA species. Previous work to identify these recognition elements has focused on experimental studies of single organisms. Here, bioinformatic analyses are used to predict recognition elements for groups of tRNA organized by domain of life and specificity. Shannon entropy differences between evolutionary profiles of tRNA domain/specificity groups and the representatives of all tRNA species reveal the uniquely conserved nucleotides within each tRNA domain/specificity, consistent with experiment. Comparative analysis of consensus sequences for these evolutionary profiles is used to locate tuning elements, also consistent with experiment. The discriminator base and the G53-C63 base pair are identified as conserved in several tRNA domain/specificities, particularly among Archaea. Both sets of predictions expand on the current knowledge of recognition elements, providing suggestions for new mutation studies.;AaRS-tRNA complex formation and the aminoacylation reaction are well-characterized through many high resolution crystal structures and biochemical assays, but dissociation of the charged tRNA with subsequent binding to EF-Tu is not well understood. Using molecular modeling and molecular dynamics simulations, the effects of protonation states and the presence/absence of substrates and EF-Tu on tRNA release are explored. Using multiple dynamics and energetics analyses, the migration of protons from the 3' end of the tRNA and the alpha-ammonium group on the charging amino acid is shown to accelerate tRNA dissociation. The presence of AMP has only a minimal effect. Further, pKa calculations predict that Glu41, a conserved residue binding the alpha-ammonium group of the charging amino acid, is part of a proton relay system for releasing the charging amino acid upon transfer. This system is conserved both in structure and sequences across homologous aaRSs and may represent a universal handle for binding and releasing the charging amino acid. Addition of EF-Tu to the aaRS-tRNA complex stimulates tRNA dissociation. Knowledge of the exit strategies leads to a greater understanding of tRNA dynamics between the first two steps of translation.
机译:在蛋白质合成中,细胞机制的关键成分是转移RNA(tRNA)。这种小核酸对于维持遗传密码至关重要,因为它可区别地结合核糖体上的信使RNA密码子,并将同源氨基酸添加到生长中的多肽链上。 tRNA作为衔接分子的作用已有数十年的历史,但有关进入核糖体之前先将tRNA与同源氨基酸结合的细节仍在不断涌现。氨酰基-tRNA合成酶(aaRS)是识别细胞池中特定tRNA和氨基酸并促进tRNA上正确氨基酸带电的酶。氨基酰化后,tRNA从aaRSs解离并结合延伸因子Tu(EF-Tu)传递至核糖体; aaRSs,EF-Tu和其他酶沿翻译途径对特定tRNA物种的识别基于tRNA物种不同组中的一组高度保守的核苷酸。识别这些识别元素的先前工作集中在单一生物的实验研究上。在这里,生物信息学分析被用来预测由生活领域和特异性组织的tRNA组的识别元件。 tRNA结构域/特异性组的进化谱与所有tRNA物种的代表之间的香农熵差异揭示了每个tRNA结构域/特异性中唯一保守的核苷酸,与实验一致。这些进化图谱的共有序列的比较分析用于定位调整元素,也与实验一致。鉴别碱基和G53-C63碱基对在几种tRNA结构域/特异性中被认为是保守的,特别是在古细菌中。两组预测都扩展了当前对识别元件的了解,为新的突变研究提供了建议。AaRS-tRNA复合物的形成和氨基酰化反应通过许多高分辨率的晶体结构和生化分析得到了很好的表征,但是带电荷的tRNA却解离了后来与EF-Tu的结合尚不清楚。使用分子建模和分子动力学模拟,探讨了质子化状态以及底物和EF-Tu的存在与否对tRNA释放的影响。使用多种动力学和能量学分析,显示质子从tRNA的3'末端迁移,并且带电氨基酸上的α-铵基团加速了tRNA的解离。 AMP的存在仅具有最小的作用。另外,pKa计算预测Glu41是结合电荷氨基酸的α-铵基团的保守残基,是用于在转移时释放电荷氨基酸的质子中继系统的一部分。该系统在跨同源aaRS的结构和序列上均是保守的,并且可以代表用于结合和释放电荷氨基酸的通用手柄。将EF-Tu加到aaRS-tRNA复合物中可刺激tRNA的解离。对退出策略的了解导致对翻译的前两个步骤之间的tRNA动力学有了更深入的了解。

著录项

  • 作者

    Black Pyrkosz, Alexis Anne.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Biology Molecular.;Biology Bioinformatics.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号