首页> 外文学位 >Characterization of the redox switches in human heme oxygenase-2 and a human heme-responsive potassium channel.
【24h】

Characterization of the redox switches in human heme oxygenase-2 and a human heme-responsive potassium channel.

机译:人类血红素加氧酶2和人类血红素反应性钾通道中的氧化还原开关的表征。

获取原文
获取原文并翻译 | 示例

摘要

Heme oxygenase (HO) catalyzes heme catabolism, generating CO, biliverdin, and Fe2+. HO-2, the constitutively expressed isoform of HO, contains three Cys-Pro signatures (heme-regulatory-motifs, HRMs). In HO-2, we demonstrated that the C-terminal HRMs constitute a thiol/disulfide redox switch, regulating affinity of HO-2 for heme. HO-2 has lower affinity for Fe3+-heme (Kd=350 nM) when the C-terminal HRMs are in the dithiol state, but 10-fold higher affinity for Fe3+-heme (Kd=33 nM) when the C-terminal HRMs switch to the disulfide state. The three-dimensional structure of the core domain in HO-2 was determined in our research and found to be nearly identical to that of other HOs. Furthermore, our in vivo thiol trapping results demonstrated that the thiol/disulfide switch in human HO-2 is physiologically relevant, with its redox potential near the ambient intracellular redox potential (-200 mV). In human HEK293 cells, the C-terminal HRMs were found to be 60-70% reduced under normal growth conditions, while oxidative stress conditions convert most (86-89%) of the C-terminal HRMs to the disulfide state. Treatment with reductants converts the C-terminal HRMs largely (81-87%) to the dithiol state.;Our research on the human large-conductance Ca2+ and voltage-activated K+ (BK) channel demonstrates a novel thiol/disulfide-mediated regulatory mechanism by which it can respond to cellular hypoxic/normoxic conditions. Our results demonstrate that heme, CO, and HO-2 bind to the 134-residue heme-binding domain (HBD) of human BK channel, which contains a characteristic CXXCH motif. The histidine residue in this motif serves as the axial heme ligand, with the CXXC forming a thiol/disulfide redox switch that regulates the HBD's affinity for Fe3+-heme and CO. The dithiol state was demonstrated to bind Fe3+-heme (Kd=210 nM) 14-fold more tightly than the disulfide state. Furthermore, the HBD-Fe3+-heme complex demonstrated tight binding of CO (Kd=50 nM), with the CXXC motif regulating its affinity for CO. Fluorescence quenching experiments suggested that HBD is the key domain for BK channel's interaction with HO-2. These combined findings indicate that thiol/disulfide redox switches in the C-terminal HRMs of HO-2 and the CXXCH motif of the BK channel establish a novel mechanism that allows hemoproteins to respond to variations in redox environments of cell.
机译:血红素加氧酶(HO)催化血红素分解代谢,生成CO,biliverdin和Fe2 +。 HO-2,HO的组成型表达亚型,包含三个Cys-Pro签名(血红素调节基序,HRM)。在HO-2中,我们证明了C端HRM构成了巯基/二硫键的氧化还原开关,调节HO-2对血红素的亲和力。当C端HRM处于二硫醇状态时,HO-2对Fe3 +血红素的亲和力较低(Kd = 350 nM),但当C端HRM的HO-2对Fe3 +血红素的亲和力(Kd = 33 nM)高10倍切换到二硫化物状态。在我们的研究中确定了HO-2中核心域的三维结构,发现该结构与其他HO几乎相同。此外,我们的体内硫醇捕获结果表明,人HO-2中的硫醇/二硫键开关具有生理相关性,其氧化还原电位接近周围细胞内氧化还原电位(-200 mV)。在人HEK293细胞中,发现在正常生长条件下C末端HRM降低了60-70%,而氧化应激条件将大多数(86-89%)C末端HRM转化为二硫键状态。用还原剂处理可将C端HRMs大量(81-87%)转化为二硫醇状态。;我们对人大电导Ca2 +和电压激活的K +(BK)通道的研究表明,硫醇/二硫键介导的新型调节机制通过它可以对细胞的缺氧/缺氧状况作出反应。我们的结果表明,血红素,CO和HO-2与人BK通道的134个残基血红素结合域(HBD)结合,后者包含一个特征性的CXXCH基序。该基序中的组氨酸残基用作轴向血红素配体,CXXC形成硫醇/二硫键氧化还原开关,调节HBD对Fe3 +-血红素和CO的亲和力。二硫醇状态证明与Fe3 +-血红素结合(Kd = 210 nM )比二硫化物状态紧密14倍。此外,HBD-Fe3 +-血红素复合物表现出CO的紧密结合(Kd = 50 nM),CXXC基序调节其对CO的亲和力。荧光猝灭实验表明,HBD是BK通道与HO-2相互作用的关键域。这些综合的发现表明,HO-2的C端HRM和BK通道的CXXCH基序中的硫醇/二硫键氧化还原开关建立了一种新的机制,该机制使血红素能够响应细胞氧化还原环境中的变化。

著录项

  • 作者

    Yi, Li.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号