首页> 外文学位 >Enhanced zinc oxide and graphene nanostructures for electronics and sensing applications.
【24h】

Enhanced zinc oxide and graphene nanostructures for electronics and sensing applications.

机译:用于电子和传感应用的增强型氧化锌和石墨烯纳米结构。

获取原文
获取原文并翻译 | 示例

摘要

Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes.;Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ∼5.7 cm2/V·s at low operation voltage of 5 V and a low turn-on voltage of ∼0.5 V with a sub threshold swing of ∼85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (∼106) and mobility (∼28 cm2/V·s). A bottom gated FET showed large hysteresis of ∼5.0 to 8.0 V which was significantly reduced to ∼1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ∼46% and a minimum detection limit of ∼1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases.;Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ∼88.80% light transmittance and ∼1.1742O/sq k sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.
机译:氧化锌和石墨烯纳米结构是重要的技术材料,因为它们的独特特性以及在下一代电子和传感设备中的潜在应用。本文简要研究了生长氧化锌纳米结构(薄膜和纳米线)和石墨烯的策略及其在增强型场效应晶体管,化学传感器和透明柔性电极中的应用。纳米结构氧化锌(ZnO)和低镓通过磁控溅射工艺合成了掺杂的氧化锌(GZO)薄膜。氧化锌纳米线(ZNWs)通过化学气相沉积法生长。 ZnO和GZO薄膜以及ZNW的场效应晶体管(FET)是通过标准的光电子束光刻工艺制造的。通过无损表面清洁,高温和真空下的紫外线辐照处理,研究了这些器件的电气特性。 GZO薄膜晶体管在<5 V的低工作电压和〜0.5 V的低导通电压下具有约5.7 cm2 / V·s的迁移率,子阈值摆幅约为85 mV /十倍。由ZNW制成的底栅FET具有很高的通断比(〜106)和迁移率(〜28 cm2 / V·s)。底栅FET表现出约5.0至8.0 V的大磁滞,通过表面处理工艺可将其显着降低至约1.0V。结果表明,ZnO纳米结构中的电荷传输在很大程度上取决于其表面环境条件,并且可以通过各种表面状态在表面形成耗尽层来解释。开发了使用单个ZNW的一氧化氮(NO)气体传感器,并用Cr纳米颗粒进行了功能化。该传感器表现出的平均灵敏度约为46%,对NO气体的最低检测极限约为1.5 ppm。通过与N2,CO和CO2气体的交叉敏感性测试证明,该传感器对NO气体也具有选择性。通过化学气相沉积法在铜箔上合成石墨烯膜。开发了一种热压层压工艺,用于将石墨烯薄膜转移到柔性聚合物基材上。石墨烯/聚合物膜表现出高质量,柔性的透明导电结构,并具有独特的机电性能。 〜88.80%的透光率和〜1.1742O / sq k薄层电阻。演示了石墨烯/聚合物膜作为场致发射显示器的柔性透明电极的应用。

著录项

  • 作者

    Verma, Ved Prakash.;

  • 作者单位

    Florida International University.;

  • 授予单位 Florida International University.;
  • 学科 Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号