首页> 外文学位 >Integrating theoretical and experimental methods for multi-scale tissue engineering of the annulus fibrosus of the intervertebral disc.
【24h】

Integrating theoretical and experimental methods for multi-scale tissue engineering of the annulus fibrosus of the intervertebral disc.

机译:整合理论和实验方法的椎间盘环纤维多尺度组织工程。

获取原文
获取原文并翻译 | 示例

摘要

There is a critical need for tissue engineered replacements for diseased and degenerated intervertebral discs in order to assuage low back pain while restoring function to the spine. Despite progress by many research groups, it remains a challenge to engineer a replacement tissue that can withstand the complex, demanding loading environment of the spine. Due to the hierarchical organization of the intervertebral disc, successful recapitulation of its functional behavior requires replication of anatomic form and physiologic function over a wide range of length scales. In this work, the technology of electrospinning has been employed for tissue engineering of the annulus fibrosus (AF) of the intervertebral disc using a multi-scale approach. The mechanics of electrospun nanofibrous assemblies was first characterized, focusing on how microscopic organization translates to macroscopic mechanical function. Next, engineered tissues were formed by culturing cells on nanofibrous scaffolds, generating aligned, dense collagenous tissues that replicate the single lamellar organization of the AF. This technology was then expanded to engineer angle-ply laminates that replicated both the anatomic form and mechanical function of the native AF. Finally, these results were further extended to engineer an angle-ply fiber-reinforced hydrogel composite that parallels the macroscopic structural organization of the intervertebral disc. Throughout, mechanical testing and mathematical modeling was used to understand material behavior, quantify functional growth, and guide comparison between engineered AF constructs and native tissue benchmarks. Emphasis has been placed on reconciling compositional and structural observations with their macroscopic mechanical implications, utilizing theoretical models to understand these relationships, and using engineered tissues to improve our understanding of structure-function relations within native fiber-reinforced soft tissues.
机译:迫切需要对病变和退化的椎间盘进行组织工程替代,以减轻腰痛,同时恢复脊柱功能。尽管许多研究小组都取得了进展,但工程设计一种能够承受脊椎复杂而苛刻的负重环境的替代组织仍然是一项挑战。由于椎间盘的分层组织,其功能行为的成功概括需要在很宽的长度范围内复制解剖形式和生理功能。在这项工作中,采用静电纺丝技术已采用多尺度方法对椎间盘纤维环(AF)的组织工程进行了研究。首先对电纺纳米纤维组件的力学进行了表征,重点是微观组织如何转化为宏观机械功能。接下来,通过在纳米纤维支架上培养细胞来形成工程组织,生成排列整齐的致密胶原组织,该组织复制AF的单个层状组织。然后将该技术扩展到工程化角膜层板层压板,该层压板可复制天然AF的解剖学形式和机械功能。最后,这些结果被进一步扩展以设计一种角度层纤维增强的水凝胶复合材料,该复合材料与椎间盘的宏观结构组织相似。贯穿整个过程,使用机械测试和数学建模来了解材料的行为,量化功能增长,并指导工程AF构造和天然组织基准之间的比较。重点已放在协调成分和结构观察与宏观机械含义之间,利用理论模型来理解这些关系,并利用工程组织来改善我们对天然纤维增强的软组织内结构-功能关系的理解。

著录项

  • 作者

    Nerurkar, Nandan.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 263 p.
  • 总页数 263
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号