首页> 外文学位 >Surface passivation and open-circuit voltage in ultra-thin silicon solar cells.
【24h】

Surface passivation and open-circuit voltage in ultra-thin silicon solar cells.

机译:超薄硅太阳能电池的表面钝化和开路电压。

获取原文
获取原文并翻译 | 示例

摘要

Silicon solar cells are the most widely used and optimized solar cells. Because of this, of any solar cell technology they have achieved efficiencies which are closest to their theoretical performance limits of any material. The record one-sun silicon solar cell has an efficiency of 24.7%, compared to a theoretical efficiency of approximately 31% (depending on the solar spectrum). In these devices, the short circuit currents are exceptionally close to their theoretical values. However, the open circuit voltages even in record solar cells are substantially below their theoretical limits.;The highest voltage silicon solar cells attain voltages of approximately 739 mV by Sanyo. Other groups have shown the capability of achieving ∼ 720 mV by several device structures using different methods of surface passivation. However, while these experimental results suggest a fundamental limiting mechanisms near 739 mV, the theoretical limit from detailed balance calculations is between 830 mV and 860 mV (depending on concentration and spectrum). The more than 100 mV discrepancy still remains a challange.;In order to achieve silicon solar cells which approach the detailed balance voltage limits, the work will examine and reduce the fundamental mechanisms controlling the open circuit voltage. The three fundamental factors limiting the open circuit voltage of a solar cells are: (1) fundamental recombination parameters, which for silicon is dominated by Auger recombination; (2) the volume of material in which recombination takes place (which for a given concentration ratio is determined by the thickness of the material), and (3) the surface passivation. In order to overcome existing open circuit voltage limitations, each of these loss mechanisms require new approaches.;If all of photo-generated carriers in the ultra-thin device can be extracted out of the device, in the form of current and voltage, then the efficiencies are bound to reach the detail balance limit. This can be possible only with a passivation scheme that allows very low surface recombination velocity and a light trapping scheme that allows the optical path length of 50, i.e. the light bounces back and forth in the device multiple times hence increasing the chances of absorption. Since the device thickness is reduced to a considerable amount, a low surface recombination velocity and an optical path length ∼ 50 becomes extremely hard to achieve in ultra-thin wafers with today's technology.;The goal of the thesis is to improve the understanding of the open circuit voltage in the silicon solar cells by means of theoretical demonstration of analytical modeling, and by practical means of reduced thickness and surface passivation schemes relevant for ultra-thin silicon solar cells.
机译:硅太阳能电池是使用最广泛且最优化的太阳能电池。因此,在任何太阳能电池技术中,它们都达到了最接近其任何材料理论性能极限的效率。创纪录的单太阳硅太阳能电池的效率为24.7%,而理论效率约为31%(取决于太阳光谱)。在这些设备中,短路电流异常接近其理论值。但是,即使在记录的太阳能电池中,开路电压也大大低于其理论极限。三洋公司的最高电压硅太阳能电池达到了约739 mV的电压。其他小组已显示出使用不同的表面钝化方法通过几种器件结构达到约720 mV的能力。但是,尽管这些实验结果表明基本的限制机制接近739 mV,但通过详细的平衡计算得出的理论极限在830 mV至860 mV之间(取决于浓度和光谱)。超过100 mV的差异仍然是一个挑战。为了使硅太阳能电池达到详细的平衡电压极限,工作将检查并减少控制开路电压的基本机制。限制太阳能电池开路电压的三个基本因素是:(1)基本复合参数,对于硅,其主要由俄歇复合决定; (2)发生复合的材料体积(对于给定的浓度比,该体积由材料的厚度决定),以及(3)表面钝化。为了克服现有的开路电压限制,这些损耗机制中的每一个都需要新的方法。如果超薄设备中的所有光生载流子都可以电流和电压的形式从设备中提取出来,则效率势必会达到细节平衡的极限。这只有在允许非常低的表面复合速度的钝化方案和允许光程长度为50的光捕获方案(即光在设备中来回反射多次),从而增加吸收机会的情况下才有可能。由于将器件厚度减小到可观的程度,因此利用当今的技术在超薄晶圆中很难实现低的表面复合速度和约50的光程长度。论文的目的是提高对硅的了解。通过分析建模的理论演示,以及通过减少与超薄硅太阳能电池相关的厚度和表面钝化方案的实践手段,在硅太阳能电池中实现开路电压。

著录项

  • 作者

    Chhabra, Bhumika.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Alternative Energy.;Energy.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号