首页> 外文学位 >Mechanisms of Has2 regulation and hyaluronan signaling during embryonic development.
【24h】

Mechanisms of Has2 regulation and hyaluronan signaling during embryonic development.

机译:胚胎发育过程中Has2调控和透明质酸信号传导的机制。

获取原文
获取原文并翻译 | 示例

摘要

The cardiovasculature is the first functional system in the developing embryo and as such, it plays a crucial role in the proper nourishment and formation of all other body regions and organs. Malformation or malfunction of this system can lead to a series of conditions collectively known as cardiovascular diseases, which are a major cause of death around the world, claiming 17.5 million human lives a year. A detailed understanding the mechanisms that regulate cardiac morphogenesis is necessary to provide us with clues of what goes awry in disease states and to develop possible strategies for diagnostics and treatment of these problems.;There is a wide variety of processes and molecules that have been identified to date as important players for the proper formation of the cardiovasculature. One of these molecules is Hyaluronan synthase 2 (Has2), a membrane protein in charge of assembling the glycosaminoglycan hyaluronan (HA). Mouse embryos lacking Has2 do not produce HA and display abnormalities such as absence of endocardial cushions, a disarrayed vascular network, and growth retardation, leading to death by embryonic day E 9.5. Thus, Has2 and HA are necessary for the early stages of heart formation, but many questions remain to be answered in regards to their mechanism of action and their role in later events such as the formation of the coronary vessels. Our current study addresses these questions in vitro employing two cell lines. NIH-3T3 cells are used as a model of mesenchymal endocardial cushion cells while epicardial cells are used to assess Has2 and HA function in embryonic cells with an epithelial phenotype.;Here we show that HA induces biological activity in embryonic cells in a manner that is dependent on its molecular size, with high molecular weight HA (HMW-HA), but not low molecular weight HA (LMW-HA), being able to affect cellular behavior. HMW-HA induces invasion of NIH-3T3 cells while it promotes differentiation and invasion of epicardial cells.;We also demonstrate that stimulation of cells with HMW-HA promotes the association of MEKK1 with the HA receptor CD44 and induces MEKK1 phosphorylation. This leads to the activation of two distinct pathways, one ERK-dependent and another NFkappaB-dependent. Although both cells lines show activation of these cascades, the ERK-dependent pathway is more prominent in epicardial cells while the NFkappaB-dependent pathway is favored in NIH-3T3 cells. Blockade of CD44, transfection with a kinase inactive MEKK1 construct or the use of ERK1/2 and NFkappaB inhibitors significantly abrogates the cellular response to HMW-HA. Together, these findings suggest an important role for HA in the regulation of embryonic cell fate via activation of MEKK1 signaling mechanisms.;Finally, we have elucidated a novel functional connection between growth factor signaling, endogenous HA production and the regulation of cellular responses. Specifically, we show that both TGFbeta2 and EGF induce Has2 expression and/or phosphorylation, although distinct intracellular signals are activated for each growth factor. While TGFbeta2 governs Has2 via MEKK3-dependent mechanisms, EGF does not require MEKK3 and does not induce Has2 expression as robustly as TGFbeta2. Increased Has2 activity as a result of TGFbeta2 and EGF stimulation leads to enhanced HA synthesis. These increased endogenous levels of HA are coincident with enhanced cellular differentiation and invasion. Taken together, these findings underscore how EGF, TGFbeta2 and HA signals are integrated to form highly complex networks that are crucial for the proper formation of organs and tissues during development.
机译:心血管系统是发育中的胚胎中的第一个功能系统,因此,它在所有其他身体部位和器官的适当营养和形成中起着至关重要的作用。该系统的畸形或故障会导致一系列疾病,这些疾病统称为心血管疾病,是全世界范围内的主要死亡原因,每年导致1750万人死亡。必须详细了解调节心脏形态发生的机制,才能为我们提供疾病状态的线索,并为诊断和治疗这些问题制定可能的策略。;已经确定了各种各样的过程和分子迄今为止,它们是正确形成心血管系统的重要角色。这些分子之一是透明质酸合酶2(Has2),一种负责装配糖胺聚糖透明质酸(HA)的膜蛋白。缺少Has2的小鼠胚胎不会产生HA并显示异常现象,例如缺少心内膜垫,混乱的血管网络和生长迟缓,导致胚胎在E 9.5天死亡。因此,Has2和HA对于心脏形成的早期阶段是必不可少的,但是关于它们的作用机理以及它们在诸如冠状血管形成等后期事件中的作用,仍有许多问题尚待解答。我们当前的研究在体外采用两种细胞系解决了这些问题。 NIH-3T3细胞被用作间充质心内膜衬垫细胞的模型,而心外膜细胞被用于评估具有上皮表型的胚胎细胞中的Has2和HA功能;在此我们证明HA可以通过以下方式诱导胚胎细胞的生物学活性:取决于其分子大小,具有高分子量HA(HMW-HA),但不具有低分子量HA(LMW-HA),能够影响细胞行为。 HMW-HA诱导NIH-3T3细胞侵袭,同时促进心外膜细胞的分化和侵袭。我们还证明,用HMW-HA刺激细胞可促进MEKK1与HA受体CD44缔合并诱导MEKK1磷酸化。这导致两种不同途径的激活,一种途径是ERK依赖性的,另一种途径是NFkappaB的。尽管两种细胞系均显示出这些级联反应的激活,但心外膜细胞中ERK依赖性途径更为突出,而NIH-3T3细胞则更倾向于NFkappB依赖性途径。 CD44的阻断,用激酶失活的MEKK1构建体转染或使用ERK1 / 2和NFkappaB抑制剂可显着消除对HMW-HA的细胞应答。在一起,这些发现表明HA通过激活MEKK1信号传导机制在调节胚胎细胞命运中起着重要作用。最后,我们阐明了生长因子信号传导,内源性HA产生和细胞应答调节之间的新型功能联系。具体来说,我们显示TGFbeta2和EGF均可诱导Has2表达和/或磷酸化,尽管每个生长因子均激活了不同的细胞内信号。尽管TGFbeta2通过MEKK3依赖性机制控制Has2,但EGF不需要MEKK3,并且不像TGFbeta2一样强烈诱导Has2表达。由于TGFbeta2和EGF刺激,Has2活性增加导致HA合成增强。这些增加的内源性HA水平与增强的细胞分化和侵袭性同时发生。综上所述,这些发现强调了EGF,TGFbeta2和HA信号如何整合形成高度复杂的网络,这些网络对于发育过程中器官和组织的正确形成至关重要。

著录项

  • 作者

    Craig, Evisabel Arauz.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Health Sciences Pharmacology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号