首页> 外文学位 >A novel mechanism for intestinal absorption of the type II diabetes drug metformin: Role of cation-selective apical transporters in paracellular absorption.
【24h】

A novel mechanism for intestinal absorption of the type II diabetes drug metformin: Role of cation-selective apical transporters in paracellular absorption.

机译:II型糖尿病药物二甲双胍肠吸收的新机制:阳离子选择性心尖转运蛋白在细胞旁吸收中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Metformin, a widely prescribed anti-hyperglycemic agent, is very hydrophilic with net positive charge at physiological pH, and thus should be poorly absorbed. Instead, the drug is well absorbed (oral bioavailability of 40-60%), although the absorption is dose-dependent and variable; the drug accumulates in enterocytes during oral absorption. To date, the transport processes associated with the intestinal absorption of metformin are poorly understood. This dissertation work describes an unusual and novel intestinal absorption mechanism for metformin. The absorption mechanism involves two-way transport of metformin across the apical membrane of enterocytes that is mediated by cation-selective transporters, and facilitated diffusion across the paracellular route, working in concert to yield high and sustained absorption.;Metformin absorption was evaluated in the well established model for intestinal epithelium, Caco-2 cell monolayers. Metformin was efficiently transported across the apical membrane by bidirectional cation-selective transporters; however, the drug accumulated in the cells due to inefficient egress across the basolateral membrane. Consequently, the absorptive transport was almost exclusively through the paracellular route; however, the paracellular transport contained a distinct saturable component.;Evidence is presented to show that the mechanism responsible for the observed saturable paracellular transport involves electrostatic interactions between positively charged metformin and negatively charged amino acid residues on the pore-forming tight-junction protein, claudin-2. Treating Caco-2 cells with the active metabolite of vitamin D3, 1,25-dihydroxyvitamin D3, selectively induced claudin-2 in preference to other tight junction proteins, and concurrently increased paracellular transport of metformin. Overexpression of claudin-2 in renal epithelial cells, LLC-PK1, caused size-dependent increase in paracellular transport of small organic cations, further supporting the role of claudin-2 in facilitating paracellular transport of hydrophilic cationic compounds. By employing a novel chemical inhibition scheme, it was revealed that both the organic cation transporter 1 (hOCT1) and the plasma membrane monoamine transporter (PMAT) were involved in the apical uptake/efflux of metformin in Caco-2 cell monolayers.;Taken together, these results suggest a novel mechanism to explain how a hydrophilic cation like metformin is absorbed efficiently, though it uses the inefficient paracellular route for absorption. It is hypothesized that metformin is taken up into enterocytes via apical cation-selective transporters, hOCT1 and PMAT, and accumulates in the cells because of inefficient basolateral egress due to the lack of cation-selective efflux transporters. At each segment of the intestine, a small fraction of the metformin dose is absorbed via the paracellular route, facilitated by claudin-2, while a significant portion of the dose is taken up into the cells. Drug is then effluxed back into the lumen as the dose of the drug travels forward, taken up into distal enterocytes, or absorbed through the paracellular space. The apical transporters function to sequester the drug and allow for multiple opportunities to be absorbed by the paracellular route; thus, increasing the residence time in the intestine enabling efficient absorption. This dissertation work provides novel insights into the mechanisms associated with intestinal absorption and accumulation of metformin. The absorption mechanism proposed can account for the sustained high exposure of metformin achieved in the primary pharmacological organ, the liver, via the portal circulation. Additionally, the mechanisms proposed here can account for the possible role of the intestine in the pharmacology, gastrointestinal side effects, and adverse events of metformin.
机译:二甲双胍是一种广泛使用的降血糖药,在生理pH值下具有很强的亲水性和净正电荷,因此应吸收不良。相反,药物吸收良好(口服生物利用度为40-60%),尽管吸收是剂量依赖性和可变的。口服吸收期间,药物会积聚在肠上皮细胞中。迄今为止,人们对与二甲双胍肠吸收有关的转运过程了解甚少。这篇论文描述了二甲双胍的异常和新颖的肠道吸收机制。吸收机制涉及二甲双胍通过阳离子选择性转运蛋白介导的跨肠细胞顶膜的双向转运,并促进跨副细胞途径的扩散,共同产生高而持久的吸收。完善的肠上皮模型,Caco-2细胞单层。二甲双胍通过双向阳离子选择性转运蛋白有效地跨过根尖膜转运。然而,由于穿过基底外侧膜的出口效率低下,药物在细胞中积累。因此,吸收性转运几乎全部通过细胞旁途径进行。然而,旁细胞运输包含一个独特的可饱和成分。证据表明,负责观察到的可饱和旁细胞运输的机制涉及成孔紧密连接蛋白上带正电荷的二甲双胍和带负电荷的氨基酸残基之间的静电相互作用, claudin-2。用维生素D3、1,25-二羟基维生素D3的活性代谢产物处理Caco-2细胞,比其他紧密连接蛋白优先选择诱导claudin-2,同时增加二甲双胍的细胞旁运输。肾上皮细胞,LLC-PK1中claudin-2的过度表达引起小有机阳离子的旁细胞转运的大小依赖性增加,进一步支持claudin-2在促进亲水性阳离子化合物的旁细胞转运中的作用。通过采用一种新颖的化学抑制方案,发现有机阳离子转运蛋白1(hOCT1)和质膜单胺转运蛋白(PMAT)参与了Caco-2细胞单层中二甲双胍的根吸收/流出。 ,这些结果提出了一种新颖的机制来解释亲水性阳离子(如二甲双胍)如何有效吸收,尽管它使用了效率低下的细胞旁途径进行吸收。假设二甲双胍通过顶端阳离子选择性转运蛋白hOCT1和PMAT吸收到肠细胞中,并由于缺乏阳离子选择性外流转运蛋白而导致基底外侧流出效率低下而在细胞中蓄积。在肠的每个部分,小剂量的二甲双胍通过细胞旁途径被claudin-2吸收,而相当一部分吸收到细胞中。然后,随着一定剂量的药物向前传播,吸收到远端肠上皮细胞或通过细胞旁间隙吸收,药物被排回到腔中。顶端转运蛋白起隔离药物的作用,并允许细胞旁途径吸收多种机会。因此,增加了在肠中的停留时间,从而能够有效吸收。本论文为与二甲双胍肠道吸收和累积有关的机制提供了新颖的见解。提出的吸收机制可以解释通过门脉循环在主要药理器官肝脏中实现的二甲双胍持续高暴露。此外,此处提出的机制可解释肠道在药理学中的可能作用,胃肠道副作用和二甲双胍的不良事件。

著录项

  • 作者

    Proctor, William Ross, III.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Health Sciences Pharmacy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 298 p.
  • 总页数 298
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号