首页> 外文学位 >A molecular dynamics based study of bulk and finite polystyrene-carbon dioxide binary systems.
【24h】

A molecular dynamics based study of bulk and finite polystyrene-carbon dioxide binary systems.

机译:基于分子动力学的本体和有限聚苯乙烯-二氧化碳二元体系研究。

获取原文
获取原文并翻译 | 示例

摘要

Development of special techniques for bonding nanoscale polymer devices is currently a priority in the medical industry for various drug delivery applications. Methods of bonding polymer nanostructures without introducing either organic solvents, adhesives or higher processing temperatures are being explored. One of the methods uses supercritical CO2 as an intermediate processing agent. In the presence of dense high pressure CO2, there is depression in glass transition temperature (Tg) and reduction in viscosity and inter facial tension, all of which facilitate bonding at near room-temperature environment. However, due to the absence of sufficient understanding of the dynamics taking place at the molecular level, optimized fabrication of stable nanoscale structures is still a huge design challenge. Molecular scale modeling comes across as a viable option to understand the physics at the atomic scale. Bonding of polymer nanostructures requires a thorough understanding of the underlying mechanism ranging from atomic scale interactions (∼ 0.1-1 nm) to polymer chain dynamics both at the free surface and near the substrate (∼ 1-10 nm) to the mechanics at the nanodevice level (∼ 10-100 nm). Modeling such phenomenon requires a multi-scale approach.;A molecular dynamics (MD) based multi-scale computational design framework has been developed in this work to understand the effect of these mechanisms on polymer thin film due to the size dependence, free surface, high pressure CO2 and the type of substrate used. Polystyrene (PS) is used to model the polymer. Physical properties such as density, free volume, segmental motion across the thickness and end group mobility are also studied to gain insights into the polymer dynamics. The model is used to study the Tg of finite polystyrene (PS) system in the presence of high pressure CO2. It is shown in this work that interactions between PS and CO2 is instrumental in governing the Tg of the PS-CO2 system. The effectiveness of the simulation model is established by comparing with the experimental free-volume data from positronium annihilation lifetime spectroscopy (PALS).;An important observation made in this study is that polymer samples exposed to high pressure CO2 develop a distinct surface layer that is swollen (less dense) and contains polymer segments that are highly mobile. The swelling along with the enhanced chain motion at the surface facilitates strong interface bonding between polymer samples. Bonding process with different CO2 pressures was simulated in this work. The bond-strength was determined by measuring extent of chain diffusion and chain entanglement across samples and the local stress at the site of bonding when strained. All these observations are further quantified to serve as design information to develop an optimized bonding process for polymer-nanostructure fabrication.;To scale up the computational model to experimental length scales, a new rigid-body based coarse-grained molecular dynamics model for polystyrene is also developed. In this new representation, a PS monomer is replaced by an effective four beads structure where the phenyl side group is replaced as one rigid body entity. An order of magnitude scale advantage in terms of system size and timescale is achieved. The results have been validated against regular explicit system representation. This model is used to solve realistic nano-systems (∼40-100nm) for thin film properties.
机译:用于粘合纳米级聚合物器件的特殊技术的开发目前是医疗行业中针对各种药物输送应用的优先事项。人们正在探索在不引入有机溶剂,粘合剂或更高加工温度的情况下粘合聚合物纳米结构的方法。其中一种方法使用超临界CO2作为中间处理剂。在致密的高压CO2存在下,玻璃化转变温度(Tg)降低,粘度和界面张力降低,所有这些都有助于在接近室温的环境下粘合。但是,由于对分子水平上发生的动力学缺乏足够的了解,稳定纳米级结构的优化制造仍然是巨大的设计挑战。分子尺度建模是理解原子尺度物理的可行选择。聚合物纳米结构的键合需要彻底理解从原子尺度相互作用(〜0.1-1 nm)到自由表面和衬底附近的聚合物链动力学(〜1-10 nm)在内的机理,乃至纳米器件的机理。水平(〜10-100 nm)。对这种现象进行建模需要采用多尺度方法。在这项工作中,开发了基于分子动力学(MD)的多尺度计算设计框架,以了解这些机理对聚合物薄膜的影响,包括尺寸依赖性,自由表面,高压二氧化碳和所用基材的类型。聚苯乙烯(PS)用于模拟聚合物。还研究了诸如密度,自由体积,沿厚度方向的分段运动和端基迁移率等物理性质,以深入了解聚合物动力学。该模型用于研究存在高压CO2的有限聚苯乙烯(PS)系统的Tg。这项工作表明,PS和CO2之间的相互作用有助于控制PS-CO2系统的Tg。通过与正电子ron没寿命光谱法(PALS)的实验自由体积数据进行比较,建立了仿真模型的有效性。该研究的一个重要观察结果是,暴露于高压CO2的聚合物样品形成了一个明显的表面层,即溶胀(密度较小)并且包含高度可移动的聚合物链段。溶胀以及表面上增强的链运动促进了聚合物样品之间的牢固界面结合。在这项工作中模拟了不同二氧化碳压力下的粘合过程。通过测量样品中链扩散和链缠结的程度以及应变时键合处的局部应力来确定键合强度。所有这些观察结果都将进一步量化,以作为设计信息,以开发用于聚合物纳米结构制造的优化粘合工艺。;为了将计算模型按比例放大至实验长度尺度,采用了一种新的基于刚体的聚苯乙烯粗粒分子动力学模型也发展了。在这个新的表示中,PS单体被有效的四珠结构取代,其中苯基侧基被取代为一个刚性实体。在系统大小和时间尺度方面实现了数量级规模的优势。已针对常规显式系统表示对结果进行了验证。该模型用于解决现实的纳米系统(约40-100nm)的薄膜特性。

著录项

  • 作者

    Srivastava, Anand.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号